On the stability of electrochemical CO2 reduction reaction to formate at indium electrodes at biocompatible conditions

被引:4
|
作者
Izadi, Paniz [1 ]
Kas, Aykut [1 ]
Haus, Philip [1 ]
Harnisch, Falk [1 ]
机构
[1] UFZ Helmholtz Ctr Environm Res, Dept Environm Microbiol, Leipzig, Germany
关键词
Electrobiotechnology; Electrobiorefinery; Electrocatalysis; Carbon dioxide reduction; CARBON-DIOXIDE; CHAIN ELONGATION; ELECTROREDUCTION; ELECTROLYSIS; SELECTIVITY; MEMBRANES; CATALYSTS; CATHODE; GAS;
D O I
10.1016/j.electacta.2023.142733
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
In a circular economy, carbon dioxide (CO2) has to serve as feedstock that can be utilized by electrochemical CO2 reduction reaction (eCO2RR). Using eCO2RR to C1-compounds such as formate (HCOO-) allows producing feed for microbial syntheses that generates value-added compounds. However, eCO2RR at biocompatible conditions is currently limited to short-term operation facing a gradual performance deterioration. Here, we evaluate the possible parameters affecting the stability of performance in terms of formate production rate (rHCOO- ) and coulombic efficiency (CE) of eCO2RR at indium during 72 h batch mode operation. Formate accumulated over time affected catholyte conductivity, but statistical analysis showed this did not have an immediate influence on the performance. However, both are key factors altering the actual cathode potential over time that in turn is leading to changes in rHCOO- (maximum deviation of & PLUSMN; 0.03 mmol h-1 cm-2 at the stable performance at each condition) and CE (maximum deviation & PLUSMN; 40% at stable performance at each condition). These effects were more significant after reaching certain formate concentration and catholyte conductivity (ca. 70 mM and 21 mS cm-1, respectively). These results highlight the potential obstacles needed to be considered and tackled in order to achieve stable rHCOO- and CE over a long-term eCO2RR operation. This study discusses how to overcome these obstacles from different operational perspectives.
引用
收藏
页数:11
相关论文
共 50 条
  • [31] Electrochemical Reduction of Protic Supercritical CO2 on Copper Electrodes
    Melchaeva, Olga
    Voyame, Patrick
    Bassetto, Victor Costa
    Prokein, Michael
    Renner, Manfred
    Weidner, Eckhard
    Petermann, Marcus
    Battistel, Alberto
    CHEMSUSCHEM, 2017, 10 (18) : 3660 - 3670
  • [32] Computational studies of CO2 electrochemical reduction with metal electrodes
    Li, Shuzhou
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2019, 257
  • [34] ELECTROCHEMICAL REDUCTION OF CO2 AT CU+AU ELECTRODES
    KYRIACOU, G
    ANAGNOSTOPOULOS, A
    JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 1992, 328 (1-2): : 233 - 243
  • [35] Electrochemical interfaces during CO2 reduction on copper electrodes
    Ligt, Bianca
    Hensen, Emiel J. M.
    Figueiredo, Marta Costa
    CURRENT OPINION IN ELECTROCHEMISTRY, 2023, 41
  • [36] ELECTROCHEMICAL REDUCTION OF CO2 AT INTENTIONALLY OXIDIZED COPPER ELECTRODES
    FRESE, KW
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1991, 138 (11) : 3338 - 3344
  • [37] Tandem catalysis in electrochemical CO2 reduction reaction
    Yating Zhu
    Xiaoya Cui
    Huiling Liu
    Zhenguo Guo
    Yanfeng Dang
    Zhanxi Fan
    Zhicheng Zhang
    Wenping Hu
    Nano Research, 2021, 14 : 4471 - 4486
  • [38] Copper Nanowires for Electrochemical CO2 Reduction Reaction
    Lin, Wuyang
    Ghulam Nabi, Azeem
    Palma, Matteo
    Di Tommaso, Devis
    ACS APPLIED NANO MATERIALS, 2024, 7 (24) : 27883 - 27898
  • [39] Tandem strategy for electrochemical CO2 reduction reaction
    Zhang, Bing
    Wang, Linlin
    Li, Di
    Li, Zongmiao
    Bu, Ran
    Lu, Yingying
    CHEM CATALYSIS, 2022, 2 (12): : 3395 - 3429
  • [40] Effect of the reaction environment on the CO2 electrochemical reduction
    Varela, Ana Sofia
    CHEM CATALYSIS, 2022, 2 (02): : 233 - 235