Deep Learning-based Brain Tumour Segmentation

被引:4
|
作者
Ventakasubbu, Pattabiraman [1 ]
Ramasubramanian, Parvathi [1 ]
机构
[1] Vellore Inst Technol, Sch Comp Sci & Engn, Chennai 620127, Tamil Nadu, India
关键词
Dice loss; FCNN; Leaky ReLU; MRI; ReLU; Segmentation; U-Net;
D O I
10.1080/03772063.2021.1919219
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Artificial Intelligence has changed our outlook towards the whole world, and it is regularly used to better understand all the data and information that surround us in our everyday lives. One such application of Artificial Intelligence in a real-world scenario is the extraction of data from various images and interpreting them in different ways. This includes applications like object detection, image segmentation, image restoration, etc. While every technique has its own area of application, image segmentation has a variety of applications extending from the complex medical field to regular pattern identification. The aim of this paper is to research about several FCNN-based semantic segmentation techniques to develop a deep learning model that is able to segment tumours in brain MRI images to a high degree of precision and accuracy. The aim is to try several different architectures and experiments with several loss functions to improve the accuracy of our model and obtain the best model for our classification including newer loss functions like dice loss function, hierarchical dice loss function cross entropy, etc.
引用
下载
收藏
页码:3156 / 3164
页数:9
相关论文
共 50 条
  • [21] Review of Deep Learning-Based Semantic Segmentation
    Zhang Xiangfu
    Jian, Liu
    Shi Zhangsong
    Wu Zhonghong
    Zhi, Wang
    LASER & OPTOELECTRONICS PROGRESS, 2019, 56 (15)
  • [22] Deep learning-based classification and segmentation for scalpels
    Baiquan Su
    Qingqian Zhang
    Yi Gong
    Wei Xiu
    Yang Gao
    Lixin Xu
    Han Li
    Zehao Wang
    Shi Yu
    Yida David Hu
    Wei Yao
    Junchen Wang
    Changsheng Li
    Jie Tang
    Li Gao
    International Journal of Computer Assisted Radiology and Surgery, 2023, 18 : 855 - 864
  • [23] Deep learning-based classification and segmentation for scalpels
    Su, Baiquan
    Zhang, Qingqian
    Gong, Yi
    Xiu, Wei
    Gao, Yang
    Xu, Lixin
    Li, Han
    Wang, Zehao
    Yu, Shi
    Hu, Yida David
    Yao, Wei
    Wang, Junchen
    Li, Changsheng
    Tang, Jie
    Gao, Li
    INTERNATIONAL JOURNAL OF COMPUTER ASSISTED RADIOLOGY AND SURGERY, 2023, 18 (05) : 855 - 864
  • [24] Deep Learning-Based Liver Vessel Segmentation
    Hille, Georg
    Jahangir, Tameem
    Hürtgen, Janine
    Kreher, Rober
    Saalfeld, Sylvia
    Current Directions in Biomedical Engineering, 2024, 10 (01) : 29 - 32
  • [25] Deep learning-based segmentation for disease identification
    Mzoughi, Olfa
    Yahiaoui, Itheri
    ECOLOGICAL INFORMATICS, 2023, 75
  • [26] A survey on deep learning-based panoptic segmentation
    Li, Xinye
    Chen, Ding
    DIGITAL SIGNAL PROCESSING, 2022, 120
  • [27] Deep Learning-Based HCNN and CRF-RRNN Model for Brain Tumor Segmentation
    Deng, Wu
    Shi, Qinke
    Wang, Miye
    Zheng, Bing
    Ning, Ning
    IEEE ACCESS, 2020, 8 : 26665 - 26675
  • [28] Deep learning-based brain tumor segmentation on limited sequences of magnetic resonance imaging
    Huang, Jacky
    Molleti, Powell
    Iv, Michael
    Lee, Richard
    Itakura, Haruka
    JOURNAL OF CLINICAL ONCOLOGY, 2022, 40 (16)
  • [29] A review of recent progress in deep learning-based methods for MRI brain tumor segmentation
    Chihati, Sarah
    Gaceb, Djamel
    2020 11TH INTERNATIONAL CONFERENCE ON INFORMATION AND COMMUNICATION SYSTEMS (ICICS), 2020, : 149 - 154
  • [30] Deep Learning-Based Computed Tomography Image Standardization to Improve Generalizability of Deep Learning-Based Hepatic Segmentation
    Lee, Seul Bi
    Hong, Youngtaek
    Cho, Yeon Jin
    Jeong, Dawun
    Lee, Jina
    Yoon, Soon Ho
    Lee, Seunghyun
    Choi, Young Hun
    Cheon, Jung-Eun
    KOREAN JOURNAL OF RADIOLOGY, 2023, 24 (04) : 294 - 304