Deep Learning-Based Computed Tomography Image Standardization to Improve Generalizability of Deep Learning-Based Hepatic Segmentation

被引:4
|
作者
Lee, Seul Bi [1 ,2 ]
Hong, Youngtaek [3 ]
Cho, Yeon Jin [1 ,2 ,7 ]
Jeong, Dawun [3 ,4 ]
Lee, Jina [3 ,4 ]
Yoon, Soon Ho [1 ,2 ,5 ]
Lee, Seunghyun [1 ,2 ]
Choi, Young Hun [1 ,2 ]
Cheon, Jung-Eun [1 ,2 ,6 ]
机构
[1] Seoul Natl Univ Hosp, Dept Radiol, Seoul, South Korea
[2] Seoul Natl Univ, Dept Radiol, Coll Med, Seoul, South Korea
[3] Yonsei Univ, AI R&D Ctr, CONNECT, Coll Med, Seoul, South Korea
[4] Yonsei Univ, Brain Korea 21 PLUS Project Med Sci, Seoul, South Korea
[5] MEDICALIP Co Ltd, Seoul, South Korea
[6] Seoul Natl Univ, Inst Radiat Med, Med Res Ctr, Seoul, South Korea
[7] Seoul Natl Univ Hosp, Dept Radiol, 101 Daehak Ro, Seoul 03080, South Korea
基金
新加坡国家研究基金会;
关键词
Artificial intelligence; Automated segmentation; Image conversion; Quality control; Reproducibility; DATA AUGMENTATION; GUIDE;
D O I
10.3348/kjr.2022.0588
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
Objective: We aimed to investigate whether image standardization using deep learning-based computed tomography (CT) image conversion would improve the performance of deep learning-based automated hepatic segmentation across various reconstruction methods. Materials and Methods: We collected contrast-enhanced dual-energy CT of the abdomen that was obtained using various reconstruction methods, including filtered back projection, iterative reconstruction, optimum contrast, and monoenergetic images with 40, 60, and 80 keV. A deep learning based image conversion algorithm was developed to standardize the CT images using 142 CT examinations (128 for training and 14 for tuning). A separate set of 43 CT examinations from 42 patients (mean age, 10.1 years) was used as the test data. A commercial software program (MEDIP PRO v2.0.0.0, MEDICALIP Co. Ltd.) based on 2D U-NET was used to create liver segmentation masks with liver volume. The original 80 keV images were used as the ground truth. We used the paired t-test to compare the segmentation performance in the Dice similarity coefficient (DSC) and difference ratio of the liver volume relative to the ground truth volume before and after image standardization. The concordance correlation coefficient (CCC) was used to assess the agreement between the segmented liver volume and ground-truth volume. Results: The original CT images showed variable and poor segmentation performances. The standardized images achieved significantly higher DSCs for liver segmentation than the original images (DSC [original, 5.40%-91.27%] vs. [standardized, 93.16%-96.74%], all P < 0.001). The difference ratio of liver volume also decreased significantly after image conversion (original, 9.84%-91.37% vs. standardized, 1.99%-4.41%). In all protocols, CCCs improved after image conversion (original,-0.006-0.964 vs. standardized, 0.990-0.998). Conclusion: Deep learning-based CT image standardization can improve the performance of automated hepatic segmentation using CT images reconstructed using various methods. Deep learning-based CT image conversion may have the potential to improve the generalizability of the segmentation network.
引用
下载
收藏
页码:294 / 304
页数:11
相关论文
共 50 条
  • [1] Deep learning-based computed tomography image segmentation and volume measurement of intracerebral hemorrhage
    Peng, Qi
    Chen, Xingcai
    Zhang, Chao
    Li, Wenyan
    Liu, Jingjing
    Shi, Tingxin
    Wu, Yi
    Feng, Hua
    Nian, Yongjian
    Hu, Rong
    FRONTIERS IN NEUROSCIENCE, 2022, 16
  • [2] Application of Deep Learning-Based Medical Image Segmentation via Orbital Computed Tomography
    Chung, Yeon Woong
    Kang, Dong Gyun
    Lee, Yong Oh
    Cho, Won-Kyung
    JOVE-JOURNAL OF VISUALIZED EXPERIMENTS, 2022, (189):
  • [3] Deep learning-based Pulmonary Arterial Segmentation in Computed Tomography Images
    Merchan, Mishell
    Suarez, Juan
    Pertuz, Said
    2024 XXIV SYMPOSIUM OF IMAGE, SIGNAL PROCESSING, AND ARTIFICIAL VISION, STSIVA 2024, 2024,
  • [4] Deep Learning-Based Image Noise Quantification Framework for Computed Tomography
    Huber, Nathan R.
    Kim, Jiwoo
    Leng, Shuai
    McCollough, Cynthia H.
    Yu, Lifeng
    JOURNAL OF COMPUTER ASSISTED TOMOGRAPHY, 2023, 47 (04) : 603 - 607
  • [5] A Deep Learning-Based Image Semantic Segmentation Algorithm
    Shen, Chaoqun
    Sun, Zhongliang
    JOURNAL OF INFORMATION PROCESSING SYSTEMS, 2023, 19 (01): : 98 - 108
  • [6] Deep learning-based image reconstruction for few-view computed tomography
    Yim, Dobin
    Lee, Seungwan
    Nam, Kibok
    Lee, Dahye
    Kim, Do Kyung
    Kim, Jong-Seok
    NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 2021, 1011
  • [7] Strategies to improve deep learning-based salivary gland segmentation
    Ward van Rooij
    Max Dahele
    Hanne Nijhuis
    Berend J. Slotman
    Wilko F. Verbakel
    Radiation Oncology, 15
  • [8] Strategies to improve deep learning-based salivary gland segmentation
    van Rooij, Ward
    Dahele, Max
    Nijhuis, Hanne
    Slotman, Berend J.
    Verbakel, Wilko F.
    RADIATION ONCOLOGY, 2020, 15 (01)
  • [9] Deep learning-based segmentation of prostatic urethra on computed tomography scans for treatment planning
    Cubero, Lucia
    Garcia-Elcano, Laura
    Mylona, Eugenia
    Boue-Rafle, Adrien
    Cozzarini, Cesare
    Gabellini, Maria Giulia Ubeira
    Rancati, Tiziana
    Fiorino, Claudio
    de Crevoisier, Renaud
    Acosta, Oscar
    Pascau, Javier
    PHYSICS & IMAGING IN RADIATION ONCOLOGY, 2023, 26
  • [10] Deep learning-based three-dimensional segmentation of the prostate on computed tomography images
    Shahedi, Maysam
    Halicek, Martin
    Dormer, James D.
    Schuster, David M.
    Fei, Baowei
    JOURNAL OF MEDICAL IMAGING, 2019, 6 (02)