Frequency Splitting of Chiral Phonons from Broken Time-Reversal Symmetry in CrI3

被引:16
|
作者
Bonini, John [1 ]
Ren, Shang [2 ]
Vanderbilt, David [2 ]
Stengel, Massimiliano [3 ,4 ]
Dreyer, Cyrus E. [1 ,5 ]
Coh, Sinisa [6 ]
机构
[1] Flatiron Inst, Ctr Computat Quantum Phys, 162 5th Ave, New York, NY 10010 USA
[2] Rutgers State Univ, Dept Phys & Astron, Piscataway, NJ 08845 USA
[3] Campus UAB, CSIC, Inst Ciencia Mat Barcelona ICMAB, Bellaterra 08193, Spain
[4] ICREA Inst Catalana Recerca & Estudis Avancats, Barcelona 08010, Spain
[5] SUNY Stony Brook, Dept Phys & Astron, Stony Brook, NY 11794 USA
[6] Univ Calif Riverside, Mat Sci & Mech Engn, Riverside, CA 92521 USA
基金
美国国家科学基金会; 欧洲研究理事会;
关键词
DYNAMICS;
D O I
10.1103/PhysRevLett.130.086701
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Conventional approaches for lattice dynamics based on static interatomic forces do not fully account for the effects of time-reversal-symmetry breaking in magnetic systems. Recent approaches to rectify this involve incorporating the first-order change in forces with atomic velocities under the assumption of adiabatic separation of electronic and nuclear degrees of freedom. In this Letter, we develop a first -principles method to calculate this velocity-force coupling in extended solids and show via the example of ferromagnetic CrI3 that, due to the slow dynamics of the spins in the system, the assumption of adiabatic separation can result in large errors for splittings of zone-center chiral modes. We demonstrate that an accurate description of the lattice dynamics requires treating magnons and phonons on the same footing.
引用
收藏
页数:6
相关论文
共 50 条
  • [31] Superconductivity without diamagnetism in systems with broken time-reversal symmetry
    Logoboy, N. A.
    Sonin, E. B.
    PHYSICAL REVIEW B, 2009, 79 (02)
  • [32] Bogoliubov Fermi Surfaces in Superconductors with Broken Time-Reversal Symmetry
    Agterberg, D. F.
    Brydon, P. M. R.
    Timm, C.
    PHYSICAL REVIEW LETTERS, 2017, 118 (12)
  • [33] Hidden excitonic quantum states with broken time-reversal symmetry
    Mazza, Giacomo
    Polini, Marco
    PHYSICAL REVIEW B, 2023, 108 (24)
  • [34] Broken Translational and Time-Reversal Symmetry in Unconventional Superconducting Films
    Vorontsov, A. B.
    PHYSICAL REVIEW LETTERS, 2009, 102 (17)
  • [35] Odd Willis coupling induced by broken time-reversal symmetry
    Li Quan
    Simon Yves
    Yugui Peng
    Hussein Esfahlani
    Andrea Alù
    Nature Communications, 12
  • [36] Efficiency Statistics and Bounds for Systems with Broken Time-Reversal Symmetry
    Jiang, Jian-Hua
    Agarwalla, Bijay Kumar
    Segal, Dvira
    PHYSICAL REVIEW LETTERS, 2015, 115 (04)
  • [37] Thermodynamic Bounds on Efficiency for Systems with Broken Time-Reversal Symmetry
    Benenti, Giuliano
    Saito, Keiji
    Casati, Giulio
    PHYSICAL REVIEW LETTERS, 2011, 106 (23)
  • [38] Broken time-reversal symmetry in strongly correlated ladder structures
    Schollwöck, U.
    Chakravarty, Sudip
    Fjærestad, J.O.
    Marston, J.B.
    Troyer, M.
    Physical Review Letters, 2003, 90 (18) : 1 - 186401
  • [39] Coexistence of Even- and Odd-Frequency Superconductivities Under Broken Time-Reversal Symmetry
    Matsumoto, Masashige
    Koga, Mikito
    Kusunose, Hiroaki
    JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 2012, 81 (03)
  • [40] Broken time-reversal symmetry in a SQUID based on chiral superconducting Sr2RuO4
    Ishiguro, R.
    Sakurai, T.
    Yakabe, M.
    Nakamura, T.
    Yonezawa, S.
    Kashiwaya, S.
    Takayanagi, H.
    Maeno, Y.
    27TH INTERNATIONAL CONFERENCE ON LOW TEMPERATURE PHYSICS (LT27), PTS 1-5, 2014, 568