Frequency Splitting of Chiral Phonons from Broken Time-Reversal Symmetry in CrI3

被引:16
|
作者
Bonini, John [1 ]
Ren, Shang [2 ]
Vanderbilt, David [2 ]
Stengel, Massimiliano [3 ,4 ]
Dreyer, Cyrus E. [1 ,5 ]
Coh, Sinisa [6 ]
机构
[1] Flatiron Inst, Ctr Computat Quantum Phys, 162 5th Ave, New York, NY 10010 USA
[2] Rutgers State Univ, Dept Phys & Astron, Piscataway, NJ 08845 USA
[3] Campus UAB, CSIC, Inst Ciencia Mat Barcelona ICMAB, Bellaterra 08193, Spain
[4] ICREA Inst Catalana Recerca & Estudis Avancats, Barcelona 08010, Spain
[5] SUNY Stony Brook, Dept Phys & Astron, Stony Brook, NY 11794 USA
[6] Univ Calif Riverside, Mat Sci & Mech Engn, Riverside, CA 92521 USA
基金
美国国家科学基金会; 欧洲研究理事会;
关键词
DYNAMICS;
D O I
10.1103/PhysRevLett.130.086701
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Conventional approaches for lattice dynamics based on static interatomic forces do not fully account for the effects of time-reversal-symmetry breaking in magnetic systems. Recent approaches to rectify this involve incorporating the first-order change in forces with atomic velocities under the assumption of adiabatic separation of electronic and nuclear degrees of freedom. In this Letter, we develop a first -principles method to calculate this velocity-force coupling in extended solids and show via the example of ferromagnetic CrI3 that, due to the slow dynamics of the spins in the system, the assumption of adiabatic separation can result in large errors for splittings of zone-center chiral modes. We demonstrate that an accurate description of the lattice dynamics requires treating magnons and phonons on the same footing.
引用
收藏
页数:6
相关论文
共 50 条
  • [21] Supercurrent rectification with time-reversal symmetry broken multiband superconductors
    Yerin, Yuriy
    Drechsler, Stefan-Ludwig
    Varlamov, A. A.
    Cuoco, Mario
    Giazotto, Francesco
    PHYSICAL REVIEW B, 2024, 110 (05)
  • [22] Consequences of Broken Time-Reversal Symmetry in Triplet Josephson Junctions
    Brydon, P. M. R.
    Iniotakis, C.
    Manske, Dirk
    Sigrist, M.
    25TH INTERNATIONAL CONFERENCE ON LOW TEMPERATURE PHYSICS (LT25), PART 5: SUPERCONDUCTIVITY, 2009, 150
  • [23] Correlated ground states with (spontaneously) broken time-reversal symmetry
    Farid, B
    SOLID STATE COMMUNICATIONS, 1997, 104 (04) : 227 - 231
  • [24] Densities of states, moments, and maximally broken time-reversal symmetry
    Haydock, Roger
    Nex, C. M. M.
    PHYSICAL REVIEW B, 2006, 74 (20):
  • [25] Quantum Simulations of Interacting Systems with Broken Time-Reversal Symmetry
    Shapira, Yotam
    Manovitz, Tom
    Akerman, Nitzan
    Stern, Ady
    Ozeri, Roee
    PHYSICAL REVIEW X, 2023, 13 (02)
  • [26] Interactions and broken time-reversal symmetry in chaotic quantum dots
    Ullmo, D
    Jiang, H
    Yang, WT
    Baranger, HU
    PHYSICAL REVIEW B, 2005, 71 (20)
  • [27] Odd Willis coupling induced by broken time-reversal symmetry
    Quan, Li
    Yves, Simon
    Peng, Yugui
    Esfahlani, Hussein
    Alu, Andrea
    NATURE COMMUNICATIONS, 2021, 12 (01)
  • [28] Dynamical invariants in systems with and without broken time-reversal symmetry
    Schuch, Dieter
    LATIN-AMERICAN SCHOOL OF PHYSICS XL ELAF: SYMMETRIES IN PHYSICS, 2011, 1334 : 291 - 340
  • [29] Proximity effect of time-reversal symmetry broken noncentrosymmetric superconductors
    Kokkeler, Tim
    Golubov, Alexander
    Bergeret, Sebastian
    Tanaka, Yukio
    PHYSICAL REVIEW B, 2023, 108 (09)
  • [30] On the canonical treatment of dissipative systems with broken time-reversal symmetry
    Schuch, D
    SYMMETRIES IN SCIENCE X, 1998, : 345 - 355