Frequency Splitting of Chiral Phonons from Broken Time-Reversal Symmetry in CrI3

被引:16
|
作者
Bonini, John [1 ]
Ren, Shang [2 ]
Vanderbilt, David [2 ]
Stengel, Massimiliano [3 ,4 ]
Dreyer, Cyrus E. [1 ,5 ]
Coh, Sinisa [6 ]
机构
[1] Flatiron Inst, Ctr Computat Quantum Phys, 162 5th Ave, New York, NY 10010 USA
[2] Rutgers State Univ, Dept Phys & Astron, Piscataway, NJ 08845 USA
[3] Campus UAB, CSIC, Inst Ciencia Mat Barcelona ICMAB, Bellaterra 08193, Spain
[4] ICREA Inst Catalana Recerca & Estudis Avancats, Barcelona 08010, Spain
[5] SUNY Stony Brook, Dept Phys & Astron, Stony Brook, NY 11794 USA
[6] Univ Calif Riverside, Mat Sci & Mech Engn, Riverside, CA 92521 USA
基金
美国国家科学基金会; 欧洲研究理事会;
关键词
DYNAMICS;
D O I
10.1103/PhysRevLett.130.086701
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Conventional approaches for lattice dynamics based on static interatomic forces do not fully account for the effects of time-reversal-symmetry breaking in magnetic systems. Recent approaches to rectify this involve incorporating the first-order change in forces with atomic velocities under the assumption of adiabatic separation of electronic and nuclear degrees of freedom. In this Letter, we develop a first -principles method to calculate this velocity-force coupling in extended solids and show via the example of ferromagnetic CrI3 that, due to the slow dynamics of the spins in the system, the assumption of adiabatic separation can result in large errors for splittings of zone-center chiral modes. We demonstrate that an accurate description of the lattice dynamics requires treating magnons and phonons on the same footing.
引用
收藏
页数:6
相关论文
共 50 条
  • [1] Thermopower with broken time-reversal symmetry
    Saito, Keiji
    Benenti, Giuliano
    Casati, Giulio
    Prosen, Tomaz
    PHYSICAL REVIEW B, 2011, 84 (20):
  • [2] Superconductivity with broken time-reversal symmetry
    Sigrist, M
    PHYSICA B-CONDENSED MATTER, 2000, 280 (1-4) : 154 - 158
  • [3] Nanostructures - Time-reversal symmetry broken
    Bains, S
    LASER FOCUS WORLD, 2004, 40 (02): : 24 - +
  • [4] BROKEN TIME-REVERSAL SYMMETRY OF ANISOTROPIC SUPERFLUIDITY
    KITA, T
    JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 1993, 62 (10) : 3539 - 3556
  • [5] BROKEN TIME-REVERSAL SYMMETRY AND BERRY PHASE
    IHM, J
    INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 1993, 7 (11): : 2109 - 2146
  • [6] MICROWAVE BILLIARDS WITH BROKEN TIME-REVERSAL SYMMETRY
    STOFFREGEN, U
    STEIN, J
    STOCKMANN, HJ
    KUS, M
    HAAKE, F
    PHYSICAL REVIEW LETTERS, 1995, 74 (14) : 2666 - 2669
  • [7] Cryptoferromagnetism in superconductors with a broken time-reversal symmetry
    Sonin, E. B.
    Logoboy, N. A.
    25TH INTERNATIONAL CONFERENCE ON LOW TEMPERATURE PHYSICS (LT25), PT 5A: SUPERCONDUCTIVITY, 2009, 150 (5a):
  • [8] Functional Superconductor Interfaces from Broken Time-Reversal Symmetry
    Brydon, P. M. R.
    Iniotakis, Christian
    Manske, Dirk
    Sigrist, M.
    PHYSICAL REVIEW LETTERS, 2010, 104 (19)
  • [9] Broken time-reversal symmetry in the topological superconductor UPt3
    Avers, K. E.
    Gannon, W. J.
    Kuhn, S. J.
    Halperin, W. P.
    Sauls, J. A.
    DeBeer-Schmitt, L.
    Dewhurst, C. D.
    Gavilano, J.
    Nagy, G.
    Gasser, U.
    Eskildsen, M. R.
    NATURE PHYSICS, 2020, 16 (05) : 531 - +
  • [10] Broken time-reversal symmetry in the topological superconductor UPt3
    K. E. Avers
    W. J. Gannon
    S. J. Kuhn
    W. P. Halperin
    J. A. Sauls
    L. DeBeer-Schmitt
    C. D. Dewhurst
    J. Gavilano
    G. Nagy
    U. Gasser
    M. R. Eskildsen
    Nature Physics, 2020, 16 : 531 - 535