Common and Unique Features Learning in Multi-view Network Embedding

被引:1
|
作者
Shang, Yifan [1 ]
Ye, Xiucai [1 ]
Sakurai, Tetsuya [1 ]
机构
[1] Univ Tsukuba, Dept Comp Sci, Tsukuba, Ibaraki, Japan
关键词
D O I
10.1109/IJCNN54540.2023.10191682
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Network embedding is a powerful representation learning method for graph data, using the learned low-dimensional compact vectors as node features, which are widely used in various tasks, such as link prediction, node clustering, and classification. Compared with traditional network analysis methods, network embedding reduces computational complexity and improves analysis efficiency. Although previous work has achieved outstanding performance, it faces challenges in multi-view network embedding containing multi-type node relations. Since multi-view networks share a node set but different edges, different networks not only have common information but also have their unique information. To simultaneously capture multi-view networks' common and unique information, we propose a new framework, Common and Unique Features Learning for Multi-view Network Embedding (CU-MNE), to integrate multi-type node relations. In this paper, we propose an inter-view contrastive objective to ensure the consistency of the common features of the same node in a different view and an interfeature contrastive objective to capture the association between the common and unique features of each network node that can learn high-quality node embeddings. Extensive experiments on three real datasets show that CU-MNE outperforms the state-of-the-art methods.
引用
收藏
页数:8
相关论文
共 50 条
  • [1] Multi-View Learning of Network Embedding
    Han, Zhongming
    Zheng, Chenye
    Liu, Dan
    Duan, Dagao
    Yang, Weijie
    NEW FRONTIERS IN ARTIFICIAL INTELLIGENCE (JSAI-ISAI 2018), 2019, 11717 : 90 - 98
  • [2] A multi-view contrastive learning for heterogeneous network embedding
    Qi Li
    Wenping Chen
    Zhaoxi Fang
    Changtian Ying
    Chen Wang
    Scientific Reports, 13
  • [3] A multi-view contrastive learning for heterogeneous network embedding
    Li, Qi
    Chen, Wenping
    Fang, Zhaoxi
    Ying, Changtian
    Wang, Chen
    SCIENTIFIC REPORTS, 2023, 13 (01)
  • [4] Multi-view contrastive learning for multilayer network embedding
    Zhang, MingJie
    Wang, Dingwen
    Wu, Hongrun
    Li, Yuanxiang
    Xiang, Zhenglong
    JOURNAL OF COMPUTATIONAL SCIENCE, 2023, 67
  • [5] Multi-view Network Embedding with Structure and Semantic Contrastive Learning
    Shang, Yifan
    Ye, Xiucai
    Sakurai, Tetsuya
    2023 IEEE INTERNATIONAL CONFERENCE ON MULTIMEDIA AND EXPO, ICME, 2023, : 870 - 875
  • [6] Adversarial learning for multi-view network embedding on incomplete graphs
    Li, Chaozhuo
    Wang, Senzhang
    Yang, Dejian
    Yu, Philip S.
    Liang, Yanbo
    Li, Zhoujun
    KNOWLEDGE-BASED SYSTEMS, 2019, 180 : 91 - 103
  • [7] Multi-view Heterogeneous Network Embedding
    Du, Ouxia
    Zhang, Yujia
    Li, Xinyue
    Zhu, Junyi
    Zheng, Tanghu
    Li, Ya
    KNOWLEDGE SCIENCE, ENGINEERING AND MANAGEMENT, PT II, 2022, 13369 : 3 - 15
  • [8] Multi-View Collaborative Network Embedding
    Ata, Sezin Kircali
    Fang, Yuan
    Wu, Min
    Shi, Jiaqi
    Kwoh, Chee Keong
    Li, Xiaoli
    ACM TRANSACTIONS ON KNOWLEDGE DISCOVERY FROM DATA, 2021, 15 (03)
  • [9] Task-oriented attributed network embedding by multi-view features
    Lai, Darong
    Wang, Sheng
    Chong, Zhihong
    Wu, Weiwei
    Nardini, Christine
    KNOWLEDGE-BASED SYSTEMS, 2021, 232
  • [10] A View-Adversarial Framework for Multi-View Network Embedding
    Fu, Dongqi
    Xu, Zhe
    Li, Bo
    Tong, Hanghang
    He, Jingrui
    CIKM '20: PROCEEDINGS OF THE 29TH ACM INTERNATIONAL CONFERENCE ON INFORMATION & KNOWLEDGE MANAGEMENT, 2020, : 2025 - 2028