Multi-View Collaborative Network Embedding

被引:10
|
作者
Ata, Sezin Kircali [1 ,4 ]
Fang, Yuan [2 ]
Wu, Min [3 ]
Shi, Jiaqi [2 ,5 ]
Kwoh, Chee Keong [1 ]
Li, Xiaoli [1 ,3 ]
机构
[1] Nanyang Technol Univ, 50 Nanyang Ave, Singapore 639798, Singapore
[2] Singapore Management Univ, 80 Stamford Rd, Singapore 178902, Singapore
[3] Inst Infocomm Res, 1 Fusionopolis Way, Singapore 138632, Singapore
[4] KK Womens & Childrens Hosp, 100 Bukit Timah Rd, Singapore 229899, Singapore
[5] Univ Calif Irvine, 4293 Pereira Dr, Irvine, CA 92697 USA
关键词
Multi-view networks; network embedding;
D O I
10.1145/3441450
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Real-world networks often exist with multiple views, where each view describes one type of interaction among a common set of nodes. For example, on a video-sharing network, while two user nodes are linked, if they have common favorite videos in one view, then they can also be linked in another view if they share common subscribers. Unlike traditional single-view networks, multiple views maintain different semantics to complement each other. In this article, we propose Multi-view collAborative Network Embedding (MANE), a multi-view network embedding approach to learn low-dimensional representations. Similar to existing studies, MANE hinges on diversity and collaboration-while diversity enables views to maintain their individual semantics, collaboration enables views to work together. However, we also discover a novel form of secondorder collaboration that has not been explored previously, and further unify it into our framework to attain superior node representations. Furthermore, as each view often has varying importance w.r.t. different nodes, we propose MANE(+), an attention-based extension of MANE, to model node-wise view importance. Finally, we conduct comprehensive experiments on three public, real-world multi-view networks, and the results demonstrate that our models consistently outperform state-of-the-art approaches.
引用
收藏
页数:18
相关论文
共 50 条
  • [1] Multi-view Heterogeneous Network Embedding
    Du, Ouxia
    Zhang, Yujia
    Li, Xinyue
    Zhu, Junyi
    Zheng, Tanghu
    Li, Ya
    KNOWLEDGE SCIENCE, ENGINEERING AND MANAGEMENT, PT II, 2022, 13369 : 3 - 15
  • [2] Multi-View Learning of Network Embedding
    Han, Zhongming
    Zheng, Chenye
    Liu, Dan
    Duan, Dagao
    Yang, Weijie
    NEW FRONTIERS IN ARTIFICIAL INTELLIGENCE (JSAI-ISAI 2018), 2019, 11717 : 90 - 98
  • [3] A View-Adversarial Framework for Multi-View Network Embedding
    Fu, Dongqi
    Xu, Zhe
    Li, Bo
    Tong, Hanghang
    He, Jingrui
    CIKM '20: PROCEEDINGS OF THE 29TH ACM INTERNATIONAL CONFERENCE ON INFORMATION & KNOWLEDGE MANAGEMENT, 2020, : 2025 - 2028
  • [4] MEGAN: A Generative Adversarial Network for Multi-View Network Embedding
    Sun, Yiwei
    Wang, Suhang
    Hsieh, Tsung-Yu
    Tang, Xianfeng
    Honavar, Vasant
    PROCEEDINGS OF THE TWENTY-EIGHTH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, 2019, : 3527 - 3533
  • [5] A multi-view contrastive learning for heterogeneous network embedding
    Qi Li
    Wenping Chen
    Zhaoxi Fang
    Changtian Ying
    Chen Wang
    Scientific Reports, 13
  • [6] A multi-view contrastive learning for heterogeneous network embedding
    Li, Qi
    Chen, Wenping
    Fang, Zhaoxi
    Ying, Changtian
    Wang, Chen
    SCIENTIFIC REPORTS, 2023, 13 (01)
  • [7] Multi-view contrastive learning for multilayer network embedding
    Zhang, MingJie
    Wang, Dingwen
    Wu, Hongrun
    Li, Yuanxiang
    Xiang, Zhenglong
    JOURNAL OF COMPUTATIONAL SCIENCE, 2023, 67
  • [8] Multi-view network embedding with node similarity ensemble
    Weiwei Yuan
    Kangya He
    Chenyang Shi
    Donghai Guan
    Yuan Tian
    Abdullah Al-Dhelaan
    Mohammed Al-Dhelaan
    World Wide Web, 2020, 23 : 2699 - 2714
  • [9] Multi-view Dynamic Heterogeneous Information Network Embedding
    Zhang, Zhenghao
    Huang, Jianbin
    Tan, Qinglin
    COMPUTER JOURNAL, 2022, 65 (08): : 2016 - 2033
  • [10] Multi-view network embedding with node similarity ensemble
    Yuan, Weiwei
    He, Kangya
    Shi, Chenyang
    Guan, Donghai
    Tian, Yuan
    Al-Dhelaan, Abdullah
    Al-Dhelaan, Mohammed
    WORLD WIDE WEB-INTERNET AND WEB INFORMATION SYSTEMS, 2020, 23 (05): : 2699 - 2714