Multi-view Heterogeneous Network Embedding

被引:0
|
作者
Du, Ouxia [1 ]
Zhang, Yujia [1 ]
Li, Xinyue [1 ]
Zhu, Junyi [1 ]
Zheng, Tanghu [1 ]
Li, Ya [1 ]
机构
[1] Southwest Univ, Sch Comp & Informat Sci, Chongqing 400715, Peoples R China
基金
中国国家自然科学基金;
关键词
Heterogeneous network; Multi-view network; Enhanced view collaboration; Network analysis; Network embedding;
D O I
10.1007/978-3-031-10986-7_1
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In the real world, the complex and diverse relations among different objects can be described in the form of networks. At the same time, with the emergence and development of network embedding, it has become an effective tool for processing networked data. However, most existing network embedding methods are designed for single-view networks, which have certain limitations in describing and characterizing the network semantics. Therefore, it motivates us to study the problem of multi-view network embedding. In this paper, we propose a Multi-View Embedding method for Heterogeneous Networks, called MVHNE. It mainly focuses on the preservation of the network structure and the semantics, and we do not process them separately, but consider their mutual dependence instead. Specifically, to simplify heterogeneous networks, a semantics-based multi-view generation approach was explored. Then, based on the generated semantic views, our model has two concerns, namely the preservation of single-view semantics and the enhanced view collaboration. With extensive experiments on three real-world datasets, we confirm the validity of considering the interactions between structure and semantics for multi-view network embedding. Experiments further demonstrate that our proposed method outperforms the existing state-of-the-art methods.
引用
收藏
页码:3 / 15
页数:13
相关论文
共 50 条
  • [1] A multi-view contrastive learning for heterogeneous network embedding
    Qi Li
    Wenping Chen
    Zhaoxi Fang
    Changtian Ying
    Chen Wang
    Scientific Reports, 13
  • [2] A multi-view contrastive learning for heterogeneous network embedding
    Li, Qi
    Chen, Wenping
    Fang, Zhaoxi
    Ying, Changtian
    Wang, Chen
    SCIENTIFIC REPORTS, 2023, 13 (01)
  • [3] Multi-view Dynamic Heterogeneous Information Network Embedding
    Zhang, Zhenghao
    Huang, Jianbin
    Tan, Qinglin
    COMPUTER JOURNAL, 2022, 65 (08): : 2016 - 2033
  • [4] Heterogeneous information network embedding with incomplete multi-view fusion
    Zheng, Susu
    Yuan, Weiwei
    Guan, Donghai
    FRONTIERS OF COMPUTER SCIENCE, 2022, 16 (05)
  • [5] Heterogeneous information network embedding with incomplete multi-view fusion
    Susu Zheng
    Weiwei Yuan
    Donghai Guan
    Frontiers of Computer Science, 2022, 16
  • [6] Heterogeneous information network embedding with incomplete multi-view fusion
    Susu ZHENG
    Weiwei YUAN
    Donghai GUAN
    Frontiers of Computer Science, 2022, 16 (05) : 212 - 214
  • [7] Global Citation Recommendation employing Multi-view Heterogeneous Network Embedding
    Ali, Zafar
    Qi, Guilin
    Muhammad, Khan
    Khalil, Asim
    Ullah, Inam
    Khan, Amin
    2021 55TH ANNUAL CONFERENCE ON INFORMATION SCIENCES AND SYSTEMS (CISS), 2021,
  • [8] Multi-View Collaborative Network Embedding
    Ata, Sezin Kircali
    Fang, Yuan
    Wu, Min
    Shi, Jiaqi
    Kwoh, Chee Keong
    Li, Xiaoli
    ACM TRANSACTIONS ON KNOWLEDGE DISCOVERY FROM DATA, 2021, 15 (03)
  • [9] Multi-View Learning of Network Embedding
    Han, Zhongming
    Zheng, Chenye
    Liu, Dan
    Duan, Dagao
    Yang, Weijie
    NEW FRONTIERS IN ARTIFICIAL INTELLIGENCE (JSAI-ISAI 2018), 2019, 11717 : 90 - 98
  • [10] MFHE: Multi-View Fusion-Based Heterogeneous Information Network Embedding
    Liu, Tingting
    Yin, Jian
    Qin, Qingfeng
    APPLIED SCIENCES-BASEL, 2022, 12 (16):