GENERALIZED NUMERICAL RADIUS INEQUALITIES INVOLVING POSITIVE SEMIDEFINITE BLOCK MATRICES

被引:3
|
作者
Al-Naddaf, Baha'a [1 ]
Burqan, Aliaa [1 ]
Kittaneh, Fuad [1 ]
机构
[1] Zarqa Univ, Dept Math, Zarqa, Jordan
来源
JOURNAL OF MATHEMATICAL INEQUALITIES | 2023年 / 17卷 / 04期
关键词
block matrix; Generalized numerical radius; positive semidefinite matrix; sectorial matrix; unitarily invariant norm;
D O I
10.7153/jmi-2023-17-89
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we are interested in generalized numerical radius inequalities for the off -diagonal part of a positive semidefinite block matrix. These inequalities produce a new set of inequalities for products and sums of matrices and some inequalities related to sectorial matrices.
引用
收藏
页码:1363 / 1370
页数:8
相关论文
共 50 条
  • [41] Numerical radius inequalities of sectorial matrices
    Pintu Bhunia
    Kallol Paul
    Anirban Sen
    Annals of Functional Analysis, 2023, 14
  • [42] Numerical radius inequalities for operator matrices
    Huang, Hong
    Zhu, Zhi-Feng
    Xu, Guo-Jin
    LINEAR & MULTILINEAR ALGEBRA, 2022, 70 (20): : 5362 - 5372
  • [43] NUMERICAL RADIUS OF POSITIVE MATRICES
    GOLDBERG, M
    TADMOR, E
    ZWAS, G
    LINEAR ALGEBRA AND ITS APPLICATIONS, 1975, 12 (03) : 209 - 214
  • [44] Inequalities for operator space numerical radius of 2 x 2 block matrices
    Moslehian, Mohammad Sal
    Sattari, Mostafa
    JOURNAL OF MATHEMATICAL PHYSICS, 2016, 57 (01)
  • [45] Trace inequalities for positive semidefinite matrices with centrosymmetric structure
    Di Zhao
    Hongyi Li
    Zhiguo Gong
    Journal of Inequalities and Applications, 2012
  • [46] Trace inequalities for positive semidefinite matrices with centrosymmetric structure
    Zhao, Di
    Li, Hongyi
    Gong, Zhiguo
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2012,
  • [47] Refined and generalized numerical radius inequalities for 2 x 2 operator matrices
    Bani-Domi, Watheq
    Kittaneh, Fuad
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2021, 624 (624) : 364 - 386
  • [48] REFINEMENTS OF TWO DETERMINANTAL INEQUALITIES FOR POSITIVE SEMIDEFINITE MATRICES
    Hong, Yan
    Qi, Feng
    MATHEMATICAL INEQUALITIES & APPLICATIONS, 2022, 25 (03):
  • [49] Some inequalities for sum and product of positive semidefinite matrices
    Wang, BY
    Xi, BY
    Zhang, FZ
    LINEAR ALGEBRA AND ITS APPLICATIONS, 1999, 293 (1-3) : 39 - 49
  • [50] Singular value and norm inequalities for positive semidefinite matrices
    Al-Natoor, Ahmad
    Kittaneh, Fuad
    LINEAR & MULTILINEAR ALGEBRA, 2022, 70 (19): : 4498 - 4507