GENERALIZED NUMERICAL RADIUS INEQUALITIES INVOLVING POSITIVE SEMIDEFINITE BLOCK MATRICES

被引:3
|
作者
Al-Naddaf, Baha'a [1 ]
Burqan, Aliaa [1 ]
Kittaneh, Fuad [1 ]
机构
[1] Zarqa Univ, Dept Math, Zarqa, Jordan
来源
JOURNAL OF MATHEMATICAL INEQUALITIES | 2023年 / 17卷 / 04期
关键词
block matrix; Generalized numerical radius; positive semidefinite matrix; sectorial matrix; unitarily invariant norm;
D O I
10.7153/jmi-2023-17-89
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we are interested in generalized numerical radius inequalities for the off -diagonal part of a positive semidefinite block matrix. These inequalities produce a new set of inequalities for products and sums of matrices and some inequalities related to sectorial matrices.
引用
收藏
页码:1363 / 1370
页数:8
相关论文
共 50 条
  • [11] Inequalities on 2 x 2 block positive semidefinite matrices
    Fu, Xiaohui
    Lau, Pan-Shun
    Tam, Tin-Yau
    LINEAR & MULTILINEAR ALGEBRA, 2022, 70 (21): : 6820 - 6829
  • [12] Generalizations of Numerical Radius Inequalities Related to Block Matrices
    Burqan, Aliaa
    Abu-Rahma, Ahmad
    FILOMAT, 2019, 33 (15) : 4981 - 4987
  • [13] Numerical radius inequalities involving accretive-dissipative matrices
    Sakkijha, Mona
    Aldabbas, Eman
    Yasin, Omar
    INTERNATIONAL JOURNAL OF MATHEMATICS AND COMPUTER SCIENCE, 2021, 16 (04): : 1445 - 1454
  • [14] Partial trace inequalities for partial transpose of positive semidefinite block matrices
    Yang, Junjian
    Xu, Huan
    POSITIVITY, 2024, 28 (02)
  • [15] EQUIVALENCE ON HIROSHIMA?S TYPE INEQUALITIES FOR POSITIVE SEMIDEFINITE BLOCK MATRICES
    ZHANG, Y. U. N.
    ZHANG, H. A. I. B. O.
    SHI, S. H. U. O.
    JOURNAL OF MATHEMATICAL INEQUALITIES, 2023, 17 (01): : 341 - 347
  • [16] Improvements on some partial trace inequalities for positive semidefinite block matrices
    Li, Yongtao
    LINEAR & MULTILINEAR ALGEBRA, 2023, 71 (17): : 2823 - 2838
  • [17] Partial trace inequalities for partial transpose of positive semidefinite block matrices
    Junjian Yang
    Huan Xu
    Positivity, 2024, 28
  • [18] Rank inequalities for positive semidefinite matrices
    Lundquist, M
    Barrett, W
    LINEAR ALGEBRA AND ITS APPLICATIONS, 1996, 248 : 91 - 100
  • [19] Generalized Schur Complements Involving the Kronecker Products of Positive Semidefinite Matrices
    L. H. Lou
    Mathematical Notes, 2020, 107 : 129 - 139
  • [20] Generalized Schur Complements Involving the Kronecker Products of Positive Semidefinite Matrices
    Lou, L. H.
    MATHEMATICAL NOTES, 2020, 107 (1-2) : 129 - 139