bilinear parabolic optimal control problems;
finite volume element method;
APPROXIMATION;
D O I:
10.3934/math.2023988
中图分类号:
O29 [应用数学];
学科分类号:
070104 ;
摘要:
In this paper, we study the finite volume element method of bilinear parabolic optimal control problem. We will use the optimize-then-discretize approach to obtain the semi-discrete finite volume element scheme for the optimal control problem. Under some reasonable assumptions, we derive the optimal order error estimates in L2(J; L2) and L & DEG;& DEG;(J; L2)-norm. We use the backward Euler method for the discretization of time to get fully discrete finite volume element scheme for the optimal control problem, and obtain some error estimates. The approximate order for the state, costate and control variables is O(h3/2 + ot) in the sense of L2(J; L2) and L & DEG;& DEG;(J; L2)-norm. Finally, a numerical experiment is presented to test these theoretical results.
机构:
Nanjing Normal Univ, Sch Math Sci, Jiangsu Key Lab NSLSCS, Nanjing 210023, Peoples R ChinaNanjing Normal Univ, Sch Math Sci, Jiangsu Key Lab NSLSCS, Nanjing 210023, Peoples R China
Liu, Wenju
Zhao, Tengjin
论文数: 0引用数: 0
h-index: 0
机构:
Nanjing Normal Univ, Sch Math Sci, Jiangsu Key Lab NSLSCS, Nanjing 210023, Peoples R ChinaNanjing Normal Univ, Sch Math Sci, Jiangsu Key Lab NSLSCS, Nanjing 210023, Peoples R China
Zhao, Tengjin
Ito, Kazufumi
论文数: 0引用数: 0
h-index: 0
机构:
North Carolina State Univ, Dept Math, Raleigh, NC 27695 USANanjing Normal Univ, Sch Math Sci, Jiangsu Key Lab NSLSCS, Nanjing 210023, Peoples R China
Ito, Kazufumi
Zhang, Zhiyue
论文数: 0引用数: 0
h-index: 0
机构:
Nanjing Normal Univ, Sch Math Sci, Jiangsu Key Lab NSLSCS, Nanjing 210023, Peoples R ChinaNanjing Normal Univ, Sch Math Sci, Jiangsu Key Lab NSLSCS, Nanjing 210023, Peoples R China