A priori error estimates of finite volume element method for bilinear parabolic optimal control problem

被引:0
|
作者
Lu, Zuliang [1 ,2 ]
Xu, Ruixiang [3 ]
Hou, Chunjuan [4 ]
Xing, Lu [3 ]
机构
[1] Chongqing Three Gorges Univ, Key Lab Nonlinear Sci & Syst Struct, Key Lab Intelligent Informat Proc & Control, Chongqing 404000, Peoples R China
[2] Tianjin Univ Finance & Econ, Res Ctr Math & Econ, Tianjin 300222, Peoples R China
[3] Chongqing Three Gorges Univ, Key Lab Nonlinear Sci & Syst Struct, Chongqing 404000, Peoples R China
[4] Guangzhou Huashang Coll, Dept Data Sci, Guangzhou 511300, Peoples R China
来源
AIMS MATHEMATICS | 2023年 / 8卷 / 08期
基金
美国国家科学基金会;
关键词
bilinear parabolic optimal control problems; finite volume element method; APPROXIMATION;
D O I
10.3934/math.2023988
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we study the finite volume element method of bilinear parabolic optimal control problem. We will use the optimize-then-discretize approach to obtain the semi-discrete finite volume element scheme for the optimal control problem. Under some reasonable assumptions, we derive the optimal order error estimates in L2(J; L2) and L & DEG;& DEG;(J; L2)-norm. We use the backward Euler method for the discretization of time to get fully discrete finite volume element scheme for the optimal control problem, and obtain some error estimates. The approximate order for the state, costate and control variables is O(h3/2 + ot) in the sense of L2(J; L2) and L & DEG;& DEG;(J; L2)-norm. Finally, a numerical experiment is presented to test these theoretical results.
引用
收藏
页码:19374 / 19390
页数:17
相关论文
共 50 条
  • [21] A Priori Error Estimates of Finite Element Methods for Linear Parabolic Integro-Differential Optimal Control Problems
    Shen, Wanfang
    Ge, Liang
    Yang, Danping
    Liu, Wenbin
    [J]. ADVANCES IN APPLIED MATHEMATICS AND MECHANICS, 2014, 6 (05) : 552 - 569
  • [22] Error estimates for parabolic optimal control problem by fully discrete mixed finite element methods
    Chen, Yanping
    Lu, Zuliang
    [J]. FINITE ELEMENTS IN ANALYSIS AND DESIGN, 2010, 46 (11) : 957 - 965
  • [23] A PRIORI FINITE ELEMENT ERROR ANALYSIS FOR OPTIMAL CONTROL OF THE OBSTACLE PROBLEM
    Meyer, Christian
    Thoma, Oliver
    [J]. SIAM JOURNAL ON NUMERICAL ANALYSIS, 2013, 51 (01) : 605 - 628
  • [24] A priori error estimates of mixed finite element methods for nonlinear quadratic convex optimal control problem
    Zhang, H. W.
    Lu, Z. L.
    [J]. 2008 5TH INTERNATIONAL CONFERENCE ON ELECTRICAL ENGINEERING, COMPUTING SCIENCE AND AUTOMATIC CONTROL (CCE 2008), 2008, : 1 - +
  • [25] A priori and a posteriori error estimates of the weak Galerkin finite element method for parabolic problems
    Liu, Ying
    Nie, Yufeng
    [J]. COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2021, 99 : 73 - 83
  • [26] OPTIMAL A PRIORI ERROR ESTIMATES OF PARABOLIC OPTIMAL CONTROL PROBLEMS WITH POINTWISE CONTROL
    Leykekhman, Dmitriy
    Vexler, Boris
    [J]. SIAM JOURNAL ON NUMERICAL ANALYSIS, 2013, 51 (05) : 2797 - 2821
  • [27] ERROR ESTIMATES OF FINITE VOLUME ELEMENT METHOD FOR NONLINEAR HYPERBOLIC OPTIMAL CONTROL PROBLEMS
    Lu, Zuliang
    Li, Lin
    Feng, Yuming
    Cao, Longzhou
    Zhang, Wei
    [J]. ITALIAN JOURNAL OF PURE AND APPLIED MATHEMATICS, 2019, (41): : 70 - 84
  • [28] A PRIORI ERROR ESTIMATES FOR SPACE-TIME FINITE ELEMENT DISCRETIZATION OF PARABOLIC TIME-OPTIMAL CONTROL PROBLEMS
    Bonifacius, Lucas
    Pieper, Konstantin
    Vexler, Boris
    [J]. SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2019, 57 (01) : 129 - 162
  • [29] A PRIORI ERROR ANALYSIS FOR FINITE ELEMENT APPROXIMATION OF PARABOLIC OPTIMAL CONTROL PROBLEMS WITH POINTWISE CONTROL
    Gong, Wei
    Hinze, Michael
    Zhou, Zhaojie
    [J]. SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2014, 52 (01) : 97 - 119
  • [30] A priori error estimates for the finite element approximation of an obstacle problem
    Cheon Seoung Ryoo
    [J]. Korean Journal of Computational and Applied Mathematics, 2000, 7 (1): : 175 - 181