Optimal t-rubbling on complete graphs and paths

被引:0
|
作者
Sieben, Nandor [1 ]
机构
[1] No Arizona Univ, Dept Math & Stat, Flagstaff, AZ 86011 USA
关键词
optimal t-rubbling; pebbling; NUMBER;
D O I
10.47443/dml.2023.089
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Given a distribution of pebbles on the vertices of a graph, a rubbling move places one pebble at a vertex and removes a pebble each at two not necessarily distinct adjacent vertices. One pebble is the cost of transportation. A vertex is t-reachable if at least t pebbles can be moved to the vertex using rubbling moves. The optimal t-rubbling number of a graph is the minimum number of pebbles in a pebble distribution that makes every vertex t-reachable. The optimal t-rubbling numbers of complete graphs and paths are determined.
引用
收藏
页码:86 / 92
页数:7
相关论文
共 50 条
  • [41] DECOMPOSITION OF COMPLETE TRIPARTITE GRAPHS INTO CYCLES AND PATHS OF LENGTH THREE
    Priyadarsini, Shanmugasundaram
    Muthusamy, Appu
    CONTRIBUTIONS TO DISCRETE MATHEMATICS, 2020, 15 (03) : 117 - 129
  • [42] Packing plane spanning trees and paths in complete geometric graphs
    Aichholzer, Oswin
    Hackl, Thomas
    Korman, Matias
    van Kreveld, Marc
    Loffler, Maarten
    Pilz, Alexander
    Speckmann, Bettina
    Welzl, Emo
    INFORMATION PROCESSING LETTERS, 2017, 124 : 35 - 41
  • [43] ENUMERATING PATHS OF K-ARCS IN UNORIENTED COMPLETE GRAPHS
    RAWDIN, E
    BEDROSIAN, SD
    JOURNAL OF THE FRANKLIN INSTITUTE-ENGINEERING AND APPLIED MATHEMATICS, 1975, 299 (01): : 73 - 76
  • [44] QUASI-GROUPS DEFINING EULERIAN PATHS IN COMPLETE GRAPHS
    KOTZIG, A
    TURGEON, JM
    JOURNAL OF COMBINATORIAL THEORY SERIES B, 1982, 32 (01) : 45 - 56
  • [45] More orthogonal double covers of complete graphs by Hamiltonian paths
    Hartmann, Sven
    Leck, Uwe
    Leck, Volker
    DISCRETE MATHEMATICS, 2008, 308 (12) : 2502 - 2508
  • [46] Decomposition of Complete Graphs into Paths and Stars with Different Number of Edges
    Ilayaraja, M.
    Muthusamy, A.
    Journal of Combinatorial Mathematics and Combinatorial Computing, 2024, 122 : 301 - 316
  • [47] Channel assignment on Cartesian product of paths with complete bipartite graphs
    Lai, Yung-Ling
    Wu, Hsin-Ju
    3RD INT CONF ON CYBERNETICS AND INFORMATION TECHNOLOGIES, SYSTEMS, AND APPLICAT/4TH INT CONF ON COMPUTING, COMMUNICATIONS AND CONTROL TECHNOLOGIES, VOL 3, 2006, : 180 - +
  • [48] Triangular embeddings of complete graphs from graceful labellings of paths
    Goddyn, Luis
    Richter, R. Bruce
    Siran, Jozef
    JOURNAL OF COMBINATORIAL THEORY SERIES B, 2007, 97 (06) : 964 - 970
  • [49] Successive shortest paths in complete graphs with random edge weights
    Gerke, Stefanie
    Mezei, Balazs F.
    Sorkin, Gregory B.
    RANDOM STRUCTURES & ALGORITHMS, 2020, 57 (04) : 1205 - 1247
  • [50] Approximation strategies for routing edge disjoint paths in complete graphs
    Kosowski, Adrian
    STRUCTURAL INFORMATION AND COMMUNICATION COMPLEXITY, PROCEEDINGS, 2006, 4056 : 130 - 142