Optimal t-rubbling on complete graphs and paths

被引:0
|
作者
Sieben, Nandor [1 ]
机构
[1] No Arizona Univ, Dept Math & Stat, Flagstaff, AZ 86011 USA
关键词
optimal t-rubbling; pebbling; NUMBER;
D O I
10.47443/dml.2023.089
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Given a distribution of pebbles on the vertices of a graph, a rubbling move places one pebble at a vertex and removes a pebble each at two not necessarily distinct adjacent vertices. One pebble is the cost of transportation. A vertex is t-reachable if at least t pebbles can be moved to the vertex using rubbling moves. The optimal t-rubbling number of a graph is the minimum number of pebbles in a pebble distribution that makes every vertex t-reachable. The optimal t-rubbling numbers of complete graphs and paths are determined.
引用
收藏
页码:86 / 92
页数:7
相关论文
共 50 条
  • [31] Decomposition of Complete Graphs Into Paths of Length Three and Triangles
    Shyu, Tay-Woei
    ARS COMBINATORIA, 2012, 107 : 209 - 224
  • [32] Representations for complete graphs minus a disjoint union of paths
    Agarwal, Anurag
    Lopez, Manuel
    Narayan, Darren A.
    Journal of Combinatorial Mathematics and Combinatorial Computing, 2010, 72 : 173 - 180
  • [33] Greedy edge-disjoint paths in complete graphs
    Carmi, P
    Erlebach, T
    Okamoto, Y
    GRAPH-THEORETIC CONCEPTS IN COMPUTER SCIENCE, 2003, 2880 : 143 - 155
  • [34] Equivalences and the complete hierarchy of intersection graphs of paths in a tree
    Golumbic, Martin Charles
    Lipshteyn, Marina
    Stern, Michal
    DISCRETE APPLIED MATHEMATICS, 2008, 156 (17) : 3203 - 3215
  • [35] On optimal orientations of complete tripartite graphs
    Wong, W. H. W.
    Tay, E. G.
    AUSTRALASIAN JOURNAL OF COMBINATORICS, 2021, 80 : 30 - 47
  • [36] L(3,1,1)-labeling numbers of square of paths, complete graphs and complete bipartite graphs
    Amanathulla, Sk
    Sahoo, Sankar
    Pal, Madhumangal
    JOURNAL OF INTELLIGENT & FUZZY SYSTEMS, 2019, 36 (02) : 1917 - 1925
  • [37] Optimal Flight Paths over Essential Visibility Graphs
    D'Amato, Egidio
    Notaro, Immacolata
    Mattei, Massimiliano
    2018 INTERNATIONAL CONFERENCE ON UNMANNED AIRCRAFT SYSTEMS (ICUAS), 2018, : 708 - 714
  • [38] OPTIMAL PATHS IN GRAPHS WITH STOCHASTIC OR MULTIDIMENSIONAL WEIGHTS - RESPONSE
    LOUI, RP
    COMMUNICATIONS OF THE ACM, 1985, 28 (11) : 1243 - 1244
  • [39] Disjoint T-paths in tough graphs
    Kaiser, Tomas
    JOURNAL OF GRAPH THEORY, 2008, 59 (01) : 1 - 10
  • [40] The maximum edge-disjoint paths problem in complete graphs
    Kosowski, Adrian
    THEORETICAL COMPUTER SCIENCE, 2008, 399 (1-2) : 128 - 140