Optimal t-rubbling on complete graphs and paths

被引:0
|
作者
Sieben, Nandor [1 ]
机构
[1] No Arizona Univ, Dept Math & Stat, Flagstaff, AZ 86011 USA
关键词
optimal t-rubbling; pebbling; NUMBER;
D O I
10.47443/dml.2023.089
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Given a distribution of pebbles on the vertices of a graph, a rubbling move places one pebble at a vertex and removes a pebble each at two not necessarily distinct adjacent vertices. One pebble is the cost of transportation. A vertex is t-reachable if at least t pebbles can be moved to the vertex using rubbling moves. The optimal t-rubbling number of a graph is the minimum number of pebbles in a pebble distribution that makes every vertex t-reachable. The optimal t-rubbling numbers of complete graphs and paths are determined.
引用
收藏
页码:86 / 92
页数:7
相关论文
共 50 条
  • [1] Rubbling and optimal rubbling of graphs
    Belford, Christopher
    Sieben, Nandor
    DISCRETE MATHEMATICS, 2009, 309 (10) : 3436 - 3446
  • [2] Bounds on the Rubbling and Optimal Rubbling Numbers of Graphs
    Gyula Y. Katona
    Nándor Sieben
    Graphs and Combinatorics, 2013, 29 : 535 - 551
  • [3] Bounds on the Rubbling and Optimal Rubbling Numbers of Graphs
    Katona, Gyula Y.
    Sieben, Nandor
    GRAPHS AND COMBINATORICS, 2013, 29 (03) : 535 - 551
  • [4] Strict optimal rubbling of graphs
    Murphy, Kyle
    DISCRETE APPLIED MATHEMATICS, 2023, 339 : 349 - 361
  • [5] The Optimal Rubbling Number of Paths, Cycles, and Grids
    Xia, Zheng-Jiang
    Hong, Zhen-Mu
    Complexity, 2021, 2021
  • [6] The Optimal Rubbling Number of Paths, Cycles, and Grids
    Xia, Zheng-Jiang
    Hong, Zhen-Mu
    COMPLEXITY, 2021, 2021
  • [7] 1-RESTRICTED OPTIMAL RUBBLING ON GRAPHS
    Beeler, Robert A.
    Haynes, Teresa W.
    Murphy, Kyle
    DISCUSSIONES MATHEMATICAE GRAPH THEORY, 2019, 39 (02) : 575 - 588
  • [8] Optimal pebbling and rubbling of graphs with given diameter
    Gyori, Ervin
    Katona, Gyula Y.
    Papp, Laszlo F.
    DISCRETE APPLIED MATHEMATICS, 2019, 266 : 340 - 345
  • [9] Packing paths in complete graphs
    Bryant, Darryn
    JOURNAL OF COMBINATORIAL THEORY SERIES B, 2010, 100 (02) : 206 - 215
  • [10] OPTIMAL PATHS IN GRAPHS ZONE
    Cozac, Ion
    PROCEEDINGS OF THE EUROPEAN INTEGRATION: BETWEEN TRADITION AND MODERNITY, VOL 2, 2007, : 674 - 682