Influence of Methylammonium Chloride on Wide-Bandgap Halide Perovskites Films for Solar Cells

被引:13
|
作者
Guaita, Maria G. D. [1 ,2 ]
Szostak, Rodrigo [2 ]
da Silva, Francisco M. C. [2 ,3 ]
de Morais, Andreia [1 ,4 ]
Moral, Raphael F. [1 ]
Kodalle, Tim [5 ]
Teixeira, Veronica C. [2 ]
Sutter-Fella, Carolin M. [5 ]
Tolentino, Helio C. N. [2 ]
Nogueira, Ana F. [1 ]
机构
[1] Univ Campinas UNICAMP, Chem Inst IQ, Lab Nanotecnol & Energia Solar LNES, BR-13083970 Campinas, SP, Brazil
[2] Brazilian Ctr Res Energy & Mat CNPEM, Brazilian Synchrotron Light Lab LNLS, BR-13083970 Campinas, SP, Brazil
[3] Univ Campinas UNICAMP, Phys Inst IFGW, BR-13083970 Campinas, SP, Brazil
[4] Ctr Informat Technol Renato Archer CTI Renato Arch, BR-13083970 Campinas, SP, Brazil
[5] Lawrence Berkeley Natl Lab, Mol Foundry, Berkeley, CA 94720 USA
基金
巴西圣保罗研究基金会;
关键词
Br-rich perovskites; in situ grazing-incidence wide-angle X-ray scattering; in situ photoluminescence; mixed halide perovskites; X-ray fluorescence mapping; GAP PEROVSKITES; EFFICIENT; SEGREGATION; GROWTH;
D O I
10.1002/adfm.202307104
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Wide-bandgap perovskites are of paramount importance as the photoactive layer of the top cell in high-efficiency tandem solar cells. Comparably high Br contents are required to widen the perovskite bandgap. However, the increase in Br content causes heterogeneous halide distribution and photoinstability. Here, the positive effect of the additive methylammonium chloride (MACl) on the optical and electronic properties of Br-rich perovskite, deposited using N-methyl-2-pyrrolidone (NMP) as co-solvent and the gas quenching method, is investigated. Simultaneous in situ grazing-incidence wide-angle X-ray scattering and photoluminescence spectroscopy are used to track the evolution of the structural and optoelectronic properties of the perovskites with different amounts of Br and MACl during the spin-coating and thermal annealing steps. The formation mechanism is elucidated in the presence of MACl. It is observed that chloride ions inhibit the intermediate phases, favoring the formation of a perovskite phase with higher crystallinity. Nano X-ray fluorescence mapping recognizes Br-richer and poorer nanometric domains, whose average sizes reduce for samples with MACl. In conclusion, it is demonstrated that adding MACl affects the formation of wide-bandgap perovskites via destabilization of the intermediate phases and acts on the homogenization of the halide distribution, leading to improved solar cell performances. Wide-bandgap perovskites are relevant materials for tandem cells. However, the addition of bromine, to increase the bandgap, leads to the formation of a perovskite richer in defects, with halide distribution heterogeneity and photoinstability. Here, the study of the impact and mode of action of methylammonium chloride (MACl) additive, shows the inhibition of intermediates formation and the halide distribution homogenization with MACl.image
引用
收藏
页数:11
相关论文
共 50 条
  • [41] Understanding and suppressing non-radiative losses in methylammonium-free wide-bandgap perovskite solar cells
    Oliver, Robert D. J.
    Caprioglio, Pietro
    Pena-Camargo, Francisco
    Buizza, Leonardo R. V.
    Zu, Fengshuo
    Ramadan, Alexandra J.
    Motti, Silvia G.
    Mahesh, Suhas
    McCarthy, Melissa M.
    Warby, Jonathan H.
    Lin, Yen-Hung
    Koch, Norbert
    Albrecht, Steve
    Herz, Laura M.
    Johnston, Michael B.
    Neher, Dieter
    Stolterfoht, Martin
    Snaith, Henry J.
    ENERGY & ENVIRONMENTAL SCIENCE, 2022, 15 (02) : 714 - 726
  • [42] Homogenizing Morphology and Composition of Methylammonium-Free Wide-Bandgap Perovskite for Efficient and Stable Tandem Solar Cells
    Lian, Xinxin
    Xu, Ye
    Fu, Wei
    Meng, Rui
    Ma, Quanxing
    Xu, Chunyu
    Luo, Ming
    Hu, Ying
    Han, Junchao
    Min, Hao
    Krishna, Anurag
    Chen, Yifan
    Zhou, Huawei
    Zhang, Xueling
    Chen, Cong
    Chang, Jin
    Li, Can
    Chen, Yifeng
    Feng, Zhiqiang
    Li, Zhen
    Zuo, Guangzheng
    Gao, Jifan
    Zhang, Hong
    Mo, Xiaoliang
    Chu, Junhao
    ADVANCED FUNCTIONAL MATERIALS, 2024, 34 (37)
  • [43] Efficient and Stable Wide-Bandgap Methylammonium-Free Perovskite Solar Cells by Simultaneous Passivation and Cleaning with Diamine
    Zhang, Luozheng
    Zhang, Yi
    Du, Kaihuai
    Gao, Gaomeijie
    Wang, Aili
    Li, Bairu
    Fang, Zhimin
    Luo, Long
    Yuan, Ningyi
    Ding, Jianning
    SOLAR RRL, 2024, 8 (23):
  • [44] Pure-Iodide Wide-Bandgap Perovskites for High-Efficiency Solar Cells by Crystallization Control
    Zhang, Ruike
    Li, Lingcong
    Wang, Wenran
    Wu, Zhujie
    Wang, Yao
    Hong, Jin
    Rao, Huashang
    Pan, Zhenxiao
    Zhong, Xinhua
    ADVANCED FUNCTIONAL MATERIALS, 2023, 33 (25)
  • [45] Recent Advances in Wide-Bandgap Organic-Inorganic Halide Perovskite Solar Cells and Tandem Application
    Nie, Ting
    Fang, Zhimin
    Ren, Xiaodong
    Duan, Yuwei
    Liu, Shengzhong
    NANO-MICRO LETTERS, 2023, 15 (01)
  • [46] Interfacial passivation of wide-bandgap perovskite solar cells and tandem solar cells
    Xia, Rui
    Xu, Yibo
    Chen, Bingbing
    Kanda, Hiroyuki
    Franckevicius, Marius
    Gegevicius, Rokas
    Wang, Shubo
    Chen, Yifeng
    Chen, Daming
    Ding, Jianning
    Yuan, Ningyi
    Zhao, Ying
    Roldan-Carmona, Cristina
    Zhang, Xiaodan
    Dyson, Paul J.
    Nazeeruddin, Mohammad Khaja
    JOURNAL OF MATERIALS CHEMISTRY A, 2021, 9 (38) : 21939 - 21947
  • [47] Chloride-Based Additive Engineering for Efficient and Stable Wide-Bandgap Perovskite Solar Cells
    Shen, Xinyi
    Gallant, Benjamin M.
    Holzhey, Philippe
    Smith, Joel A.
    Elmestekawy, Karim A.
    Yuan, Zhongcheng
    Rathnayake, P. V. G. M.
    Bernardi, Stefano
    Dasgupta, Akash
    Kasparavicius, Ernestas
    Malinauskas, Tadas
    Caprioglio, Pietro
    Shargaieva, Oleksandra
    Lin, Yen-Hung
    McCarthy, Melissa M.
    Unger, Eva
    Getautis, Vytautas
    Widmer-Cooper, Asaph
    Herz, Laura M.
    Snaith, Henry J.
    ADVANCED MATERIALS, 2023, 35 (30)
  • [48] From narrow-bandgap GeSe to wide-bandgap GeS solar cells
    Kanghua Li
    Jiang Tang
    Science China(Chemistry), 2021, 64 (10) : 1605 - 1606
  • [49] From narrow-bandgap GeSe to wide-bandgap GeS solar cells
    Kanghua Li
    Jiang Tang
    Science China(Chemistry) , 2021, (10) : 1605 - 1606
  • [50] From narrow-bandgap GeSe to wide-bandgap GeS solar cells
    Kanghua Li
    Jiang Tang
    Science China Chemistry, 2021, 64 : 1605 - 1606