Influence of Methylammonium Chloride on Wide-Bandgap Halide Perovskites Films for Solar Cells

被引:13
|
作者
Guaita, Maria G. D. [1 ,2 ]
Szostak, Rodrigo [2 ]
da Silva, Francisco M. C. [2 ,3 ]
de Morais, Andreia [1 ,4 ]
Moral, Raphael F. [1 ]
Kodalle, Tim [5 ]
Teixeira, Veronica C. [2 ]
Sutter-Fella, Carolin M. [5 ]
Tolentino, Helio C. N. [2 ]
Nogueira, Ana F. [1 ]
机构
[1] Univ Campinas UNICAMP, Chem Inst IQ, Lab Nanotecnol & Energia Solar LNES, BR-13083970 Campinas, SP, Brazil
[2] Brazilian Ctr Res Energy & Mat CNPEM, Brazilian Synchrotron Light Lab LNLS, BR-13083970 Campinas, SP, Brazil
[3] Univ Campinas UNICAMP, Phys Inst IFGW, BR-13083970 Campinas, SP, Brazil
[4] Ctr Informat Technol Renato Archer CTI Renato Arch, BR-13083970 Campinas, SP, Brazil
[5] Lawrence Berkeley Natl Lab, Mol Foundry, Berkeley, CA 94720 USA
基金
巴西圣保罗研究基金会;
关键词
Br-rich perovskites; in situ grazing-incidence wide-angle X-ray scattering; in situ photoluminescence; mixed halide perovskites; X-ray fluorescence mapping; GAP PEROVSKITES; EFFICIENT; SEGREGATION; GROWTH;
D O I
10.1002/adfm.202307104
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Wide-bandgap perovskites are of paramount importance as the photoactive layer of the top cell in high-efficiency tandem solar cells. Comparably high Br contents are required to widen the perovskite bandgap. However, the increase in Br content causes heterogeneous halide distribution and photoinstability. Here, the positive effect of the additive methylammonium chloride (MACl) on the optical and electronic properties of Br-rich perovskite, deposited using N-methyl-2-pyrrolidone (NMP) as co-solvent and the gas quenching method, is investigated. Simultaneous in situ grazing-incidence wide-angle X-ray scattering and photoluminescence spectroscopy are used to track the evolution of the structural and optoelectronic properties of the perovskites with different amounts of Br and MACl during the spin-coating and thermal annealing steps. The formation mechanism is elucidated in the presence of MACl. It is observed that chloride ions inhibit the intermediate phases, favoring the formation of a perovskite phase with higher crystallinity. Nano X-ray fluorescence mapping recognizes Br-richer and poorer nanometric domains, whose average sizes reduce for samples with MACl. In conclusion, it is demonstrated that adding MACl affects the formation of wide-bandgap perovskites via destabilization of the intermediate phases and acts on the homogenization of the halide distribution, leading to improved solar cell performances. Wide-bandgap perovskites are relevant materials for tandem cells. However, the addition of bromine, to increase the bandgap, leads to the formation of a perovskite richer in defects, with halide distribution heterogeneity and photoinstability. Here, the study of the impact and mode of action of methylammonium chloride (MACl) additive, shows the inhibition of intermediates formation and the halide distribution homogenization with MACl.image
引用
收藏
页数:11
相关论文
共 50 条
  • [21] Dipolar cations confer defect tolerance in wide-bandgap metal halide perovskites
    Tan, Hairen
    Che, Fanglin
    Wei, Mingyang
    Zhao, Yicheng
    Saidaminov, Makhsud, I
    Todorovic, Petar
    Broberg, Danny
    Walters, Grant
    Tan, Furui
    Zhuang, Taotao
    Sun, Bin
    Liang, Zhiqin
    Yuan, Haifeng
    Fron, Eduard
    Kim, Junghwan
    Yang, Zhenyu
    Voznyy, Oleksandr
    Asta, Mark
    Sargent, Edward H.
    NATURE COMMUNICATIONS, 2018, 9
  • [22] Wide-bandgap perovskites for indoor photovoltaics
    Feng, Mingjie
    Zuo, Chuantian
    Xue, Ding-Jiang
    Liu, Xianhu
    Ding, Liming
    SCIENCE BULLETIN, 2021, 66 (20) : 2047 - 2049
  • [23] Suppressing the Photoinduced Halide Segregation in Wide-Bandgap Perovskite Solar Cells by Strain Relaxation
    Liu, Hui
    Dong, Jing
    Wang, Pengyang
    Shi, Biao
    Zhao, Ying
    Zhang, Xiaodan
    ADVANCED FUNCTIONAL MATERIALS, 2023, 33 (41)
  • [24] Tunable Wide-Bandgap Monohalide Perovskites
    El Ajjouri, Yousra
    Igual-Munoz, Ana M.
    Sessolo, Michele
    Palazon, Francisco
    Bolink, Henk J.
    ADVANCED OPTICAL MATERIALS, 2020, 8 (17)
  • [25] Additive engineering in spray enables efficient methylammonium-free wide-bandgap perovskite solar cells
    Chen, Xiao
    Geng, Cong
    Yu, Xinxin
    Feng, Yishuai
    Liang, Cheng
    Peng, Yong
    Cheng, Yi-bing
    MATERIALS TODAY ENERGY, 2023, 34
  • [26] Manipulating Crystallization of Organolead Mixed-Halide Thin Films in Antisolvent Baths for Wide-Bandgap Perovskite Solar Cells
    Zhou, Yuanyuan
    Yang, Mengjin
    Game, Onkar S.
    Wu, Wenwen
    Kwun, Joonsuh
    Strauss, Martin A.
    Yan, Yanfa
    Huang, Jinsong
    Zhu, Kai
    Padture, Nitin P.
    ACS APPLIED MATERIALS & INTERFACES, 2016, 8 (03) : 2232 - 2237
  • [27] Defect engineering in wide-bandgap perovskites for efficient perovskite-silicon tandem solar cells
    Yang, Guang
    Ni, Zhenyi
    Yu, Zhengshan J.
    Larson, Bryon W.
    Yu, Zhenhua
    Chen, Bo
    Alasfour, Abdulwahab
    Xiao, Xun
    Luther, Joseph M.
    Holman, Zachary C.
    Huang, Jinsong
    NATURE PHOTONICS, 2022, 16 (08) : 588 - +
  • [28] Molecular Bridge in Wide-Bandgap Perovskites for Efficient and Stable Perovskite/ Silicon Tandem Solar Cells
    Ye, Tianshi
    Qiao, Liang
    Wang, Tao
    Wang, Pengshuai
    Zhang, Lin
    Sun, Ruitian
    Kong, Weiyu
    Xu, Menglei
    Yan, Xunlei
    Yang, Jie
    Zhang, Xinyu
    Yang, Xudong
    ADVANCED FUNCTIONAL MATERIALS, 2025,
  • [29] Surface reconstruction of wide-bandgap perovskites enables efficient perovskite/silicon tandem solar cells
    Fang, Zheng
    Deng, Bingru
    Jin, Yongbin
    Yang, Liu
    Chen, Lisha
    Zhong, Yawen
    Feng, Huiping
    Yin, Yue
    Liu, Kaikai
    Li, Yingji
    Zhang, Jinyan
    Huang, Jiarong
    Zeng, Qinghua
    Wang, Hao
    Yang, Xing
    Yang, Jinxin
    Tian, Chengbo
    Xie, Liqiang
    Wei, Zhanhua
    Xu, Xipeng
    NATURE COMMUNICATIONS, 2024, 15 (01)
  • [30] Role of Trapped Carriers Dynamics in Operating Lead Halide Wide-Bandgap Perovskite Solar Cells
    Zhou, Yang
    Wong, E. Laine
    Mroz, Wojciech
    Folpini, Giulia
    Martani, Samuele
    Jimenez-Lopez, Jesus
    Treglia, Antonella
    Petrozza, Annamaria
    ACS ENERGY LETTERS, 2024, 9 (04) : 1666 - 1673