An enhanced monthly runoff time series prediction using extreme learning machine optimized by salp swarm algorithm based on time varying filtering based empirical mode decomposition

被引:22
|
作者
Wang, Wen-chuan [1 ]
Cheng, Qi [1 ]
Chau, Kwok-wing [2 ]
Hu, Hao [3 ]
Zang, Hong-fei [1 ]
Xu, Dong-mei [1 ]
机构
[1] North China Univ Water Resources & Elect Power, Coll Water Resources, Henan Key Lab Water Resources Conservat & Intens U, Zhengzhou 450046, Peoples R China
[2] Hong Kong Polytech Univ, Dept Civil & Environm Engn, Hung Hom, Kowloon, Hong Kong, Peoples R China
[3] Yellow River Conservancy Tech Inst, Kaifeng 475004, Peoples R China
关键词
Monthly runoff prediction; Extreme learning machine (ELM); Time varying filtering (TVF); Empirical mode decomposition (EMD); Salp swarm algorithm (SSA); ARTIFICIAL NEURAL-NETWORK; IMPROVING FORECASTING ACCURACY; POWER-GENERATION; NANOSTRUCTURES; PHOTOCATALYST; DEGRADATION; SIMULATION; OPERATION; RESERVOIR; ENSEMBLE;
D O I
10.1016/j.jhydrol.2023.129460
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
Reliable runoff prediction plays a significant role in reservoir scheduling, water resources management, and efficient utilization of water resources. To effectively enhance the prediction accuracy of monthly runoff series, a hybrid prediction model (TVF-EMD-SSA-ELM) combining time varying filtering (TVF) based empirical mode decomposition (EMD), salp swarm algorithm (SSA) and extreme learning machine (ELM) is proposed. Firstly, the monthly runoff series is decomposed into several sub-series using TVF-EMD. Secondly, SSA is used to optimize the input weights and hidden layer biases of the selected ELM model. Finally, the prediction results are generated by summing and reconstructing each sub-series based on the SSA optimized ELM model. This hybrid model is applied to the monthly runoff prediction of Manwan hydropower, Hongjiadu hydropower, and Yingluoxia hy-drological station, and compared with back propagation (BP), ELM, SSA-ELM, PSO-ELM, GSA-ELM, TVF-EMD-ELM, EMD-SSA-ELM, extreme-point symmetric mode decomposition (ESMD)-SSA-ELM, wavelet decomposition (WD)-SSA-ELM and complete ensemble empirical mode decomposition with adaptive noise (CEEMDAN)-SSA-ELM models. The prediction performance of various models is reflected by four evaluation indicators (R, NSEC, NRMSE, MAPE). Results reveal that the prediction effect of the ELM model is better than that of BP, the opti-mization accuracy of SSA is better than those of particle swarm optimization (PSO) and gravitational search algorithm (GSA), and the prediction accuracy of the hybrid TVF-EMD and SSA is better than that of only TVF-EMD or SSA. TVF-EMD-SSA-ELM model has the highest prediction accuracy. When compared with the single ELM model, it's NRMSE and MAPE at Manwan hydropower decrease by 84.4% and 72.38%, those of Hongjiadu hydropower decrease by 85.21% and 78.38%, and those of Yingluoxi hydrological station decrease by 68.42% and 39.51%, respectively. R and NSEC of the three sites are close to 1. Therefore, the proposed model provides a new method for the prediction of monthly runoff, and the results can provide a reference for the prediction of monthly runoff in the study area.
引用
收藏
页数:21
相关论文
共 50 条
  • [41] Seismic time-frequency analysis via time-varying filtering based empirical mode decomposition method
    Chen, Siyuan
    Cao, Siyuan
    Sun, Yaoguang
    Lin, Ying
    Gao, Jun
    [J]. JOURNAL OF APPLIED GEOPHYSICS, 2022, 204
  • [42] Improved monthly runoff time series prediction using the SOA-SVM model based on ICEEMDAN-WD decomposition
    Xu, Dong-mei
    Wang, Xiang
    Wang, Wen-chuan
    Chau, Kwok-wing
    Zang, Hong-fei
    [J]. JOURNAL OF HYDROINFORMATICS, 2023, 25 (03) : 943 - 970
  • [43] Study on Icing Prediction of Power Transmission Lines Based on Ensemble Empirical Mode Decomposition and Feature Selection Optimized Extreme Learning Machine
    Wang, Weijun
    Zhao, Dan
    Fan, Liguo
    Jia, Yulong
    [J]. ENERGIES, 2019, 12 (11):
  • [44] Ultra-Short-Term Wind Power Prediction by Salp Swarm Algorithm-Based Optimizing Extreme Learning Machine
    Tan, Lian
    Han, Jing
    Zhang, Hongtao
    [J]. IEEE ACCESS, 2020, 8 : 44470 - 44484
  • [45] Displacement prediction model of landslide based on a modified ensemble empirical mode decomposition and extreme learning machine
    Cheng Lian
    Zhigang Zeng
    Wei Yao
    Huiming Tang
    [J]. Natural Hazards, 2013, 66 : 759 - 771
  • [46] Displacement prediction model of landslide based on a modified ensemble empirical mode decomposition and extreme learning machine
    Lian, Cheng
    Zeng, Zhigang
    Yao, Wei
    Tang, Huiming
    [J]. NATURAL HAZARDS, 2013, 66 (02) : 759 - 771
  • [47] Short-Term Wind Power Prediction Based on Empirical Mode Decomposition and Extreme Learning Machine
    Wu, Jiajia
    Liu, Changliang
    [J]. PROCEEDINGS OF THE 2016 5TH INTERNATIONAL CONFERENCE ON ENVIRONMENT, MATERIALS, CHEMISTRY AND POWER ELECTRONICS, 2016, 84 : 872 - 877
  • [48] Dry bean cultivars classification using deep cnn features and salp swarm algorithm based extreme learning machine
    Dogan, Musa
    Taspinar, Yavuz Selim
    Cinar, Ilkay
    Kursun, Ramazan
    Ozkan, Ilker Ali
    Koklu, Murat
    [J]. COMPUTERS AND ELECTRONICS IN AGRICULTURE, 2023, 204
  • [49] Hydrological time series prediction by extreme machine learning and sparrow search algorithm
    Feng, Bao-fei
    Xu, Yin-shan
    Zhang, Tao
    Zhang, Xiao
    [J]. WATER SUPPLY, 2022, 22 (03) : 3143 - 3157
  • [50] Prediction of hydrological time-series using extreme learning machine
    Atiquzzaman, Md
    Kandasamy, Jaya
    [J]. JOURNAL OF HYDROINFORMATICS, 2016, 18 (02) : 345 - 353