Electrostatically Cross-Linked Bioinks for Jetting-Based Bioprinting of 3D Cell Cultures

被引:3
|
作者
Suwannakot, Panthipa [1 ,2 ]
Zhu, Lin [1 ,2 ]
Tolentino, M. A. Kristine [1 ,2 ]
Du, Eric Y. [1 ,2 ]
Sexton, Andrew [3 ]
Myers, Sam [3 ]
Gooding, J. Justin [1 ,2 ]
机构
[1] UNSW Sydney, Sch Chem, Sydney, NSW 2052, Australia
[2] UNSW Sydney, Australian Ctr Nanomed, Sydney, NSW 2031, Australia
[3] Inventia Life Sci Pty Ltd, Sydney, NSW 2015, Australia
来源
ACS APPLIED BIO MATERIALS | 2023年 / 7卷 / 01期
基金
英国医学研究理事会;
关键词
3D bioprinting; polyelectrolyte hydrogel; 3Dcell cultures; single spheroid formation; biomaterials; SURFACE; PARTICLES; POLYMER; TENSION; HYBRID; GROWTH;
D O I
10.1021/acsabm.3c00849
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
It has been acknowledged that thousands of drugs that passed two-dimensional (2D) cell culture models and animal studies often fail when entering human clinical trials. Despite the significant development of three-dimensional (3D) models, developing a high-throughput model that can be reproducible on a scale remains challenging. One of the main challenges is precise cell deposition and the formation of a controllable number of spheroids to achieve more reproducible results for drug discovery and treatment applications. Furthermore, when transitioning from manually generated structures to 3D bioprinted structures, the choice of material is limited due to restrictions on materials that are applicable with bioprinters. Herein, we have shown the capability of a fast-cross-linking bioink that can be used to create a single spheroid with varying diameters (660, 1100, and 1340 mu m) in a high-throughput manner using a commercialized drop-on-demand bioprinter. Throughout this work, we evaluate the physical properties of printable ink with and without cells, printing optimization, cytocompatibility, cell sedimentation, and homogeneity in ink during the printing process. This work showcases the importance of ink characterization to determine printability and precise cell deposition. The knowledge gained from this work will accelerate the development of next-generation inks compatible with a drop-on-demand 3D bioprinter for various applications such as precision models to mimic diseases, toxicity tests, and the drug development process.
引用
收藏
页码:269 / 283
页数:15
相关论文
共 50 条
  • [21] Nanostructured Pluronic hydrogels as bioinks for 3D bioprinting
    Mueller, Michael
    Becher, Jana
    Schnabelrauch, Matthias
    Zenobi-Wong, Marcy
    BIOFABRICATION, 2015, 7 (03)
  • [22] Characterization of Biocompatibility of Functional Bioinks for 3D Bioprinting
    Kim, Jinku
    BIOENGINEERING-BASEL, 2023, 10 (04):
  • [23] 3D Bioprinting of soft tissues using nanocellulose-based cell instructive bioinks
    Karabulut, Erdem
    Orrhult, Linnea Strid
    Gatenholm, Paul
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2019, 257
  • [24] Conductive Nanomaterials used in Bioinks for 3D Bioprinting
    Goklany, Sheba
    NANO LIFE, 2021, 11 (02)
  • [25] Printability and Shape Fidelity of Bioinks in 3D Bioprinting
    Schwab, Andrea
    Levato, Riccardo
    D'Este, Matteo
    Piluso, Susanna
    Eglin, David
    Malda, Jos
    CHEMICAL REVIEWS, 2020, 120 (19) : 10850 - 10877
  • [26] 3D bioprinting of cell-laden electroconductive MXene nanocomposite bioinks
    Rastin, Hadi
    Zhang, Bingyang
    Mazinani, Arash
    Hassan, Kamrul
    Bi, Jingxiu
    Tran Thanh Tung
    Losic, Dusan
    NANOSCALE, 2020, 12 (30) : 16069 - 16080
  • [27] 3D Bioprinting of In Vitro Models Using Hydrogel-Based Bioinks
    Choi, Yeong-Jin
    Park, Honghyun
    Ha, Dong-Heon
    Yun, Hui-Suk
    Yi, Hee-Gyeong
    Lee, Hyungseok
    POLYMERS, 2021, 13 (03) : 1 - 18
  • [28] An Overview of Hydrogel-Based Bioinks for 3D Bioprinting of Soft Tissues
    Soumitra Das
    Bikramjit Basu
    Journal of the Indian Institute of Science, 2019, 99 : 405 - 428
  • [29] Designing Decellularized Extracellular Matrix-Based Bioinks for 3D Bioprinting
    Abaci, Alperen
    Guvendiren, Murat
    ADVANCED HEALTHCARE MATERIALS, 2020, 9 (24)
  • [30] An Overview of Hydrogel-Based Bioinks for 3D Bioprinting of Soft Tissues
    Das, Soumitra
    Basu, Bikramjit
    JOURNAL OF THE INDIAN INSTITUTE OF SCIENCE, 2019, 99 (03) : 405 - 428