A fractal model for constrained curve and surface interpolation

被引:1
|
作者
Reddy, K. Mahipal [1 ]
Vijender, N. [2 ]
机构
[1] VIT AP Univ, Sch Adv Sci, Amaravati 522020, Andhra Prades, India
[2] Visvesvaraya Natl Inst Technol Nagpur, Dept Math, Nagpur 440010, Maharashtra, India
来源
关键词
D O I
10.1140/epjs/s11734-023-00862-0
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In the literature, a rational cubic spline fractal interpolation function is developed using a rational iterated function system. The parameters (namely, scaling factors and shape parameters) of the rational iterated function system in each subinterval are identified befittingly so that the graph of the resulting rational cubic spline fractal interpolation function lies within a prescribed rectangle. Using a partially blending technique, a rational cubic spline fractal interpolation surface is developed in the literature. The stability analysis of the rational cubic spline fractal interpolation surface is studied with respect to a perturbation in the scaling factors. We investigate the sufficient conditions under which rational cubic spline fractal interpolation surface lies inside a stipulated cuboid. We illustrate our fractal interpolation models with some numerical examples.
引用
收藏
页码:1015 / 1025
页数:11
相关论文
共 50 条
  • [11] Approaches for constrained parametric curve interpolation
    Zhang, CM
    Yang, XQ
    Wang, JY
    JOURNAL OF COMPUTER SCIENCE AND TECHNOLOGY, 2003, 18 (05) : 592 - 597
  • [12] Constrained univariate and bivariate rational fractal interpolation
    Reddy, K. M.
    Chand, A. K. B.
    INTERNATIONAL JOURNAL FOR COMPUTATIONAL METHODS IN ENGINEERING SCIENCE & MECHANICS, 2019, 20 (05): : 404 - 422
  • [13] CONSTRAINED FRACTAL INTERPOLATION FUNCTIONS WITH VARIABLE SCALING
    Chand, A. K. B.
    Reddy, K. M.
    SIBERIAN ELECTRONIC MATHEMATICAL REPORTS-SIBIRSKIE ELEKTRONNYE MATEMATICHESKIE IZVESTIYA, 2018, 15 : 60 - 73
  • [14] BOX DIMENSION OF A NONLINEAR FRACTAL INTERPOLATION CURVE
    Ri, Song-Il
    FRACTALS-COMPLEX GEOMETRY PATTERNS AND SCALING IN NATURE AND SOCIETY, 2019, 27 (03)
  • [15] Constrained space curve interpolation with constraint planes
    Kong, VP
    Ong, BH
    COMPUTER AIDED GEOMETRIC DESIGN, 2005, 22 (06) : 531 - 550
  • [16] Constrained curve surface deformation model based on metaball
    State Key Laboratory of CAD and CG, Zhejiang University, Hangzhou 310027, China
    Jisuanji Yanjiu yu Fazhan, 2006, 4 (688-694):
  • [17] Zipper quintic fractal interpolation function for curve fitting
    Sneha
    Katiyar, Kuldip
    INTERNATIONAL JOURNAL OF COMPUTING SCIENCE AND MATHEMATICS, 2024, 20 (02)
  • [18] Fractal Interpolation Using Harmonic Functions on the Koch Curve
    Ri, Song-Il
    Drakopoulos, Vasileios
    Nam, Song-Min
    FRACTAL AND FRACTIONAL, 2021, 5 (02)
  • [19] Zipper quintic fractal interpolation function for curve fitting
    Department of Mathematics, Chandigarh University, NH-05, Ludhiana – Chandigarh State Hwy, Gharuan, Punjab, Mohali
    140413, India
    Int. J. Comput. Sci. Math., 2024, 2 (118-131):
  • [20] Fractal curve interpolation algorithm in the scene of navigation simulator
    Ren, W
    Liu, D
    CISST '04: PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON IMAGING SCIENCE, SYSTEMS, AND TECHNOLOGY, 2004, : 39 - 42