Prediction of Coronary Artery Calcium Using Deep Learning of Echocardiograms

被引:12
|
作者
Yuan, Neal [1 ,2 ]
Kwan, Alan C. [3 ,5 ]
Duffy, Grant [3 ]
Theurer, John [3 ]
Chen, Jonathan H. [6 ]
Nieman, Koen [6 ,7 ]
Botting, Patrick [3 ]
Dey, Damini [5 ]
Berman, Daniel S. [3 ]
Cheng, Susan [3 ]
Ouyang, David [3 ,4 ]
机构
[1] Univ Calif San Francisco, Sch Med, San Francisco, CA USA
[2] San Francisco VA Med Ctr, Section Cardiol, San Francisco, CA USA
[3] Smidt Heart Inst, Los Angeles, CA USA
[4] Div Artificial Intelligence Med, Dept Med, Los Angeles, CA USA
[5] Cedars Sinai Med Ctr, BioMed Imaging Res Inst, Los Angeles, CA USA
[6] Stanford Univ, Dept Med, Stanford, CA USA
[7] Stanford Univ, Dept Radiol, Stanford, CA USA
基金
美国国家卫生研究院;
关键词
Coronary artery calcium; Echocardiogram; Deep learning; Machine learning; Convolutional neural network; RISK PREDICTION; CALCIFICATION; PROGRESSION; SCORE;
D O I
10.1016/j.echo.2022.12.014
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Background: Coronary artery calcification (CAC), often assessed by computed tomography (CT), is a powerful marker of coronary artery disease that can guide preventive therapies. Computed tomographies, however, are not always accessible or serially obtainable. It remains unclear whether other widespread tests such as trans-thoracic echocardiograms (TTEs) can be used to predict CAC. Methods: Using a data set of 2,881 TTE videos paired with coronary calcium CTs, we trained a video-based artificial intelligence convolutional neural network to predict CAC scores from parasternal long-axis views. We evaluated the model's ability to classify patients from a held-out sample as well as an external site sample into zero CAC and high CAC (CAC >= 400 Agatston units) groups by receiver operating characteristic and precision-recall curves. We also investigated whether such classifications prognosticated significant differences in 1-year mortality rates by the log-rank test of Kaplan-Meier curves. Results: Transthoracic echocardiogram artificial intelligence models had high discriminatory abilities in pre-dicting zero CAC (receiver operating characteristic area under the curve [AUC] = 0.81 [95% CI, 0.74-0.88], F1 score = 0.95) and high CAC (AUC = 0.74 [0.68-0.8], F1 score = 0.74). This performance was confirmed in an external test data set of 92 TTEs (AUC = 0.75 [0.65-0.85], F1 score = 0.77; and AUC = 0.85 [0.76-0.93], F1 score = 0.59, respectively). Risk stratification by TTE-predicted CAC performed similarly to CT CAC scores in prognosticating significant differences in 1-year survival in high-CAC patients (CT CAC >= 400 vs CT CAC < 400, P = .03; TTE-predicted CAC >= 400 vs TTE-predicted CAC < 400, P = .02). Conclusions: A video-based deep learning model successfully used TTE videos to predict zero CAC and high CAC with high accuracy. Transthoracic echocardiography-predicted CAC prognosticated differences in 1-year survival similar to CT CAC. Deep learning of TTEs holds promise for future adjunctive coronary artery disease risk stratification to guide preventive therapies. (J Am Soc Echocardiogr 2023;36:474-81.)
引用
收藏
页码:474 / +
页数:11
相关论文
共 50 条
  • [41] Coronary Artery Identification on Echocardiograms for Kawasaki Disease Diagnosis
    Mantecon, Tomas
    Fernandez-Cooke, Elisa
    Bertrand, Capucine
    Grasa, Carlos
    Barriosz, Ana
    Toral, Belen
    Albert, Leticia
    Rojo, Pablo
    Cabrera, Julian
    2020 INTERNATIONAL CONFERENCE ON E-HEALTH AND BIOENGINEERING (EHB), 2020,
  • [42] Influence of Deep Learning Based Image Reconstruction on Quantitative Results of Coronary Artery Calcium Scoring
    Klemenz, Ann-Christin
    Beckert, Lynn
    Manzke, Mathias
    Lang, Cajetan I.
    Weber, Marc -Andre
    Meinel, Felix G.
    ACADEMIC RADIOLOGY, 2024, 31 (06) : 2259 - 2267
  • [43] Evaluation of a Deep Learning-Based Automated CT Coronary Artery Calcium Scoring Algorithm
    Martin, Simon S.
    van Assen, Marly
    Rapaka, Saikiran
    Hudson, H. Todd, Jr.
    Fischer, Andreas M.
    Varga-Szemes, Akos
    Sahbaee, Pooyan
    Schwemmer, Chris
    Gulsun, Mehmet A.
    Cimen, Serkan
    Sharma, Puneet
    Vogl, Thomas J.
    Schoepf, U. Joseph
    JACC-CARDIOVASCULAR IMAGING, 2020, 13 (02) : 524 - 526
  • [44] Automated coronary calcium scoring using deep learning with multicenter external validation
    David Eng
    Christopher Chute
    Nishith Khandwala
    Pranav Rajpurkar
    Jin Long
    Sam Shleifer
    Mohamed H. Khalaf
    Alexander T. Sandhu
    Fatima Rodriguez
    David J. Maron
    Saeed Seyyedi
    Daniele Marin
    Ilana Golub
    Matthew Budoff
    Felipe Kitamura
    Marcelo Straus Takahashi
    Ross W. Filice
    Rajesh Shah
    John Mongan
    Kimberly Kallianos
    Curtis P. Langlotz
    Matthew P. Lungren
    Andrew Y. Ng
    Bhavik N. Patel
    npj Digital Medicine, 4
  • [45] Automated coronary calcium scoring using deep learning with multicenter external validation
    Eng, David
    Chute, Christopher
    Khandwala, Nishith
    Rajpurkar, Pranav
    Long, Jin
    Shleifer, Sam
    Khalaf, Mohamed H.
    Sandhu, Alexander T.
    Rodriguez, Fatima
    Maron, David J.
    Seyyedi, Saeed
    Marin, Daniele
    Golub, Ilana
    Budoff, Matthew
    Kitamura, Felipe
    Takahashi, Marcelo Straus
    Filice, Ross W.
    Shah, Rajesh
    Mongan, John
    Kallianos, Kimberly
    Langlotz, Curtis P.
    Lungren, Matthew P.
    Ng, Andrew Y.
    Patel, Bhavik N.
    NPJ DIGITAL MEDICINE, 2021, 4 (01)
  • [46] Deep-learning-based cardiovascular risk stratification using coronary artery calcium scores predicted from retinal photographs
    Rim, Tyler Hyungtaek
    Lee, Chan Joo
    Tham, Yih-Chung
    Cheung, Ning
    Yu, Marco
    Lee, Geunyoung
    Kim, Youngnam
    Ting, Daniel S. W.
    Chong, Crystal Chun Yuen
    Choi, Yoon Seong
    Yoo, Tae Keun
    Ryu, Ik Hee
    Baik, Su Jung
    Kim, Young Ah
    Kim, Sung Kyu
    Lee, Sang-Hak
    Lee, Byoung Kwon
    Kang, Seok-Min
    Wong, Edmund Yick Mun
    Kim, Hyeon Chang
    Kim, Sung Soo
    Park, Sungha
    Cheng, Ching-Yu
    Wong, Tien Yin
    LANCET DIGITAL HEALTH, 2021, 3 (05): : E306 - E316
  • [47] Using a deep learning algorithm to score coronary artery calcium in myocardial perfusion imaging: A real opportunity or just a new hype?
    Jan Stassen
    Pieter van der Bijl
    Jeroen J. Bax
    Journal of Nuclear Cardiology, 2023, 30 : 251 - 253
  • [48] Using a deep learning algorithm to score coronary artery calcium in myocardial perfusion imaging: A real opportunity or just a new hype?
    Stassen, Jan
    van der Bijl, Pieter
    Bax, Jeroen J.
    JOURNAL OF NUCLEAR CARDIOLOGY, 2023, 30 (01) : 251 - 253
  • [49] Prediction of Coronary Artery Disease Using Machine Learning Techniques with Iris Analysis
    Ozbilgin, Ferdi
    Kurnaz, Cetin
    Aydin, Ertan
    DIAGNOSTICS, 2023, 13 (06)
  • [50] Multi-modality deep learning model for prediction of chronic obstructive coronary artery disease
    Trivedi, R.
    Chiu, I
    Ouyang, D.
    EUROPEAN HEART JOURNAL, 2024, 45