Prediction of Coronary Artery Calcium Using Deep Learning of Echocardiograms

被引:12
|
作者
Yuan, Neal [1 ,2 ]
Kwan, Alan C. [3 ,5 ]
Duffy, Grant [3 ]
Theurer, John [3 ]
Chen, Jonathan H. [6 ]
Nieman, Koen [6 ,7 ]
Botting, Patrick [3 ]
Dey, Damini [5 ]
Berman, Daniel S. [3 ]
Cheng, Susan [3 ]
Ouyang, David [3 ,4 ]
机构
[1] Univ Calif San Francisco, Sch Med, San Francisco, CA USA
[2] San Francisco VA Med Ctr, Section Cardiol, San Francisco, CA USA
[3] Smidt Heart Inst, Los Angeles, CA USA
[4] Div Artificial Intelligence Med, Dept Med, Los Angeles, CA USA
[5] Cedars Sinai Med Ctr, BioMed Imaging Res Inst, Los Angeles, CA USA
[6] Stanford Univ, Dept Med, Stanford, CA USA
[7] Stanford Univ, Dept Radiol, Stanford, CA USA
基金
美国国家卫生研究院;
关键词
Coronary artery calcium; Echocardiogram; Deep learning; Machine learning; Convolutional neural network; RISK PREDICTION; CALCIFICATION; PROGRESSION; SCORE;
D O I
10.1016/j.echo.2022.12.014
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Background: Coronary artery calcification (CAC), often assessed by computed tomography (CT), is a powerful marker of coronary artery disease that can guide preventive therapies. Computed tomographies, however, are not always accessible or serially obtainable. It remains unclear whether other widespread tests such as trans-thoracic echocardiograms (TTEs) can be used to predict CAC. Methods: Using a data set of 2,881 TTE videos paired with coronary calcium CTs, we trained a video-based artificial intelligence convolutional neural network to predict CAC scores from parasternal long-axis views. We evaluated the model's ability to classify patients from a held-out sample as well as an external site sample into zero CAC and high CAC (CAC >= 400 Agatston units) groups by receiver operating characteristic and precision-recall curves. We also investigated whether such classifications prognosticated significant differences in 1-year mortality rates by the log-rank test of Kaplan-Meier curves. Results: Transthoracic echocardiogram artificial intelligence models had high discriminatory abilities in pre-dicting zero CAC (receiver operating characteristic area under the curve [AUC] = 0.81 [95% CI, 0.74-0.88], F1 score = 0.95) and high CAC (AUC = 0.74 [0.68-0.8], F1 score = 0.74). This performance was confirmed in an external test data set of 92 TTEs (AUC = 0.75 [0.65-0.85], F1 score = 0.77; and AUC = 0.85 [0.76-0.93], F1 score = 0.59, respectively). Risk stratification by TTE-predicted CAC performed similarly to CT CAC scores in prognosticating significant differences in 1-year survival in high-CAC patients (CT CAC >= 400 vs CT CAC < 400, P = .03; TTE-predicted CAC >= 400 vs TTE-predicted CAC < 400, P = .02). Conclusions: A video-based deep learning model successfully used TTE videos to predict zero CAC and high CAC with high accuracy. Transthoracic echocardiography-predicted CAC prognosticated differences in 1-year survival similar to CT CAC. Deep learning of TTEs holds promise for future adjunctive coronary artery disease risk stratification to guide preventive therapies. (J Am Soc Echocardiogr 2023;36:474-81.)
引用
收藏
页码:474 / +
页数:11
相关论文
共 50 条
  • [21] Fast and accurate view classification of echocardiograms using deep learning
    Madani, Ali
    Arnaout, Ramy
    Mofrad, Mohammad
    Arnaout, Rima
    NPJ DIGITAL MEDICINE, 2018, 1
  • [22] Fast and accurate view classification of echocardiograms using deep learning
    Ali Madani
    Ramy Arnaout
    Mohammad Mofrad
    Rima Arnaout
    npj Digital Medicine, 1
  • [23] EchoVisuAL: Efficient Segmentation of Echocardiograms Using Deep Active Learning
    Galter, Isabella
    Schneltzer, Elida
    Marr, Carsten
    Spielmann, Nadine
    de Angelis, Martin Hrabe
    MEDICAL IMAGE UNDERSTANDING AND ANALYSIS, PT II, MIUA 2024, 2024, 14860 : 366 - 381
  • [24] Stenosis Detection and Quantification of Coronary Artery Using Machine Learning and Deep Learning
    Zhang, Xinhong
    Zhang, Boyan
    Zhang, Fan
    ANGIOLOGY, 2024, 75 (05) : 405 - 416
  • [25] Coronary artery calcium for stroke mortality prediction
    Erhabor, John
    Boakye, Ellen
    Dardari, Zeina
    Dzaye, Omar
    Soroosh, Garshasb
    Berman, Daniel S.
    Budoff, Matthew J.
    Miedema, Michael D.
    Nasir, Khurram
    Rumberger, John A.
    Shaw, Leslee J.
    Johansen, Michelle C.
    Blaha, Michael J.
    VASCULAR MEDICINE, 2024, 29 (02) : 213 - 214
  • [26] Automatic coronary artery calcium scoring from unenhanced-ECG-gated CT using deep learning
    Nicolas, Gogin
    Viti, Mario
    Nicodeme, Luc
    Ohana, Mickael
    Talbot, Hugues
    Gencer, Umit
    Mekukosokeng, Magloire
    Caramella, Thomas
    Diascorn, Yann
    Airaud, Jean-Yves
    Guillot, Marc-Samir
    Bensalah, Zoubir
    Hieu, Caroline Dam
    Abdallah, Bassam
    Bousaid, Imad
    Lassau, Nathalie
    Mousseaux, Elie
    DIAGNOSTIC AND INTERVENTIONAL IMAGING, 2021, 102 (11) : 683 - 690
  • [27] Polygenic Risk Score and Deep Learning Using Chest Radiographs: Complementary Prediction of Incident Coronary Artery Disease
    Paruchuri, Kaavya
    Raghu, Vineet
    Hoffmann, Udo
    Natarajan, Pradeep
    Lu, Michael T.
    CIRCULATION, 2021, 144
  • [28] Deep-Learning-Based Coronary Artery Calcium Detection from CT Image
    Lee, Sungjin
    Rim, Beanbonyka
    Jou, Sung-Shick
    Gil, Hyo-Wook
    Jia, Xibin
    Lee, Ahyoung
    Hong, Min
    SENSORS, 2021, 21 (21)
  • [29] Deep learning for automated exclusion of cardiac CT examinations negative for coronary artery calcium
    van den Oever, Leonardus B.
    Cornelissen, Ludo
    Vonder, Marleen
    Xia, Congying
    van Bolhuis, Jurjen N.
    Vliegenthart, Rozemarijn
    Veldhuis, Raymond N. J.
    de Bock, Geertruida H.
    Oudkerk, Matthijs
    van Ooijen, Peter M. A.
    EUROPEAN JOURNAL OF RADIOLOGY, 2020, 129
  • [30] Deep learning-based coronary artery calcium score to predict coronary artery disease in type 2 diabetes mellitus
    Hu, Jingcheng
    Hao, Guangyu
    Xu, Jialiang
    Wang, Ximing
    Chen, Meng
    HELIYON, 2024, 10 (06)