Prediction of Coronary Artery Calcium Using Deep Learning of Echocardiograms

被引:12
|
作者
Yuan, Neal [1 ,2 ]
Kwan, Alan C. [3 ,5 ]
Duffy, Grant [3 ]
Theurer, John [3 ]
Chen, Jonathan H. [6 ]
Nieman, Koen [6 ,7 ]
Botting, Patrick [3 ]
Dey, Damini [5 ]
Berman, Daniel S. [3 ]
Cheng, Susan [3 ]
Ouyang, David [3 ,4 ]
机构
[1] Univ Calif San Francisco, Sch Med, San Francisco, CA USA
[2] San Francisco VA Med Ctr, Section Cardiol, San Francisco, CA USA
[3] Smidt Heart Inst, Los Angeles, CA USA
[4] Div Artificial Intelligence Med, Dept Med, Los Angeles, CA USA
[5] Cedars Sinai Med Ctr, BioMed Imaging Res Inst, Los Angeles, CA USA
[6] Stanford Univ, Dept Med, Stanford, CA USA
[7] Stanford Univ, Dept Radiol, Stanford, CA USA
基金
美国国家卫生研究院;
关键词
Coronary artery calcium; Echocardiogram; Deep learning; Machine learning; Convolutional neural network; RISK PREDICTION; CALCIFICATION; PROGRESSION; SCORE;
D O I
10.1016/j.echo.2022.12.014
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Background: Coronary artery calcification (CAC), often assessed by computed tomography (CT), is a powerful marker of coronary artery disease that can guide preventive therapies. Computed tomographies, however, are not always accessible or serially obtainable. It remains unclear whether other widespread tests such as trans-thoracic echocardiograms (TTEs) can be used to predict CAC. Methods: Using a data set of 2,881 TTE videos paired with coronary calcium CTs, we trained a video-based artificial intelligence convolutional neural network to predict CAC scores from parasternal long-axis views. We evaluated the model's ability to classify patients from a held-out sample as well as an external site sample into zero CAC and high CAC (CAC >= 400 Agatston units) groups by receiver operating characteristic and precision-recall curves. We also investigated whether such classifications prognosticated significant differences in 1-year mortality rates by the log-rank test of Kaplan-Meier curves. Results: Transthoracic echocardiogram artificial intelligence models had high discriminatory abilities in pre-dicting zero CAC (receiver operating characteristic area under the curve [AUC] = 0.81 [95% CI, 0.74-0.88], F1 score = 0.95) and high CAC (AUC = 0.74 [0.68-0.8], F1 score = 0.74). This performance was confirmed in an external test data set of 92 TTEs (AUC = 0.75 [0.65-0.85], F1 score = 0.77; and AUC = 0.85 [0.76-0.93], F1 score = 0.59, respectively). Risk stratification by TTE-predicted CAC performed similarly to CT CAC scores in prognosticating significant differences in 1-year survival in high-CAC patients (CT CAC >= 400 vs CT CAC < 400, P = .03; TTE-predicted CAC >= 400 vs TTE-predicted CAC < 400, P = .02). Conclusions: A video-based deep learning model successfully used TTE videos to predict zero CAC and high CAC with high accuracy. Transthoracic echocardiography-predicted CAC prognosticated differences in 1-year survival similar to CT CAC. Deep learning of TTEs holds promise for future adjunctive coronary artery disease risk stratification to guide preventive therapies. (J Am Soc Echocardiogr 2023;36:474-81.)
引用
收藏
页码:474 / +
页数:11
相关论文
共 50 条
  • [1] Prediction of Coronary Artery Calcium and Cardiovascular Risk on Chest Radiographs Using Deep Learning
    Kamel, Peter, I
    Yi, Paul H.
    Sair, Haris, I
    Lin, Cheng Ting
    RADIOLOGY-CARDIOTHORACIC IMAGING, 2021, 3 (03):
  • [2] Deep learning-based prediction of coronary artery calcium scoring in hemodialysis patients using radial artery calcification
    Xu, Yuankai
    Li, Wen
    Yang, Yanli
    Dong, Shiyi
    Meng, Fulei
    Zhang, Kaidi
    Wang, Yuhuan
    Ruan, Lin
    Zhang, Lihong
    SEMINARS IN DIALYSIS, 2024, 37 (03) : 234 - 241
  • [3] Deep Learning Based Prediction of Pulmonary Hypertension in Newborns Using Echocardiograms
    Ragnarsdottir, Hanna
    Ozkan, Ece
    Michel, Holger
    Chin-Cheong, Kieran
    Manduchi, Laura
    Wellmann, Sven
    Vogt, Julia E.
    INTERNATIONAL JOURNAL OF COMPUTER VISION, 2024, 132 (07) : 2567 - 2584
  • [4] Prediction of Coronary Artery Calcium using Retinal Photographs via Deep Learning: Korean, Spanish and Indian populations
    Tan, Yong Yu
    Fabiano, Ronaldo Correa
    Generoso, Giuliano
    Cho, Jun Hwan
    Choi, Beom-hee
    Cho, Yunnie
    Thakur, Sahil
    Rim, Tyler Hyungtaek
    Lee, Chan Joo
    Masip, David
    Barriada, Ruben
    Servat, Olga
    Hernandez, Cristina
    Cheng, Ching-Yu
    Savoy, Florian
    Nishanth, K. R.
    Rao, Divya
    Bensenor, Isabela
    Wong, Tien Yin
    Simo, Rafael
    Bittencourt, Marcio
    CIRCULATION, 2024, 150
  • [5] Coronary artery calcium score quantification using a deep-learning algorithm
    Wang, W.
    Wang, H.
    Chen, Q.
    Zhou, Z.
    Wang, R.
    Wang, H.
    Zhang, N.
    Chen, Y.
    Sun, Z.
    Xu, L.
    CLINICAL RADIOLOGY, 2020, 75 (03) : 237.e11 - 237.e16
  • [6] Prediction of Coronary Artery Calcium Score Using Machine Learning in a Healthy Population
    Lee, Jongseok
    Lim, Jae-Sung
    Chu, Younggi
    Lee, Chang Hee
    Ryu, Ohk-Hyun
    Choi, Hyun Hee
    Park, Yong Soon
    Kim, Chulho
    JOURNAL OF PERSONALIZED MEDICINE, 2020, 10 (03): : 1 - 10
  • [7] An automatic deep learning approach for coronary artery calcium segmentation
    Santini, G.
    Della Latta, D.
    Martini, N.
    Valvano, G.
    Gori, A.
    Ripoli, A.
    Susini, C. L.
    Landini, L.
    Chiappino, D.
    EMBEC & NBC 2017, 2018, 65 : 374 - 377
  • [8] Deep Learning of Retinal Imaging: A Useful Tool for Coronary Artery Calcium Score Prediction in Diabetic Patients
    Barriada, Ruben G.
    Simo-Servat, Olga
    Planas, Alejandra
    Hernandez, Cristina
    Simo, Rafael
    Masip, David
    APPLIED SCIENCES-BASEL, 2022, 12 (03):
  • [9] Explainable prediction of coronary artery disease in nuclear medical imaging using deep learning
    Papandrianos, N.
    Moustakidis, S.
    Feleki, A.
    Papageorgiou, E.
    EUROPEAN JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING, 2022, 49 (SUPPL 1) : S616 - S616
  • [10] Coronary Artery Calcium for Stroke Mortality Prediction: The Coronary Artery Calcium Consortium
    Erhabor, John
    Boakye, Ellen
    Dardari, Zeina A.
    Osei, Albert D.
    Obisesan, Olufunmilayo
    Jha, Kunal
    Kumar, Sant J.
    Rosanski, Alan
    Berman, Daniel
    Budoff, Matthew
    Miedema, Michael D.
    Johansen, Michelle C.
    Nasir, Khurram
    Rumberger, John A.
    Shaw, Leslee J.
    Blaha, Michael J.
    CIRCULATION, 2022, 146