A comparative techno-economic assessment of blue, green, and hybrid ammonia production in the United States

被引:0
|
作者
Mersch, Matthias [1 ,2 ,3 ]
Sunny, Nixon [1 ,3 ]
Dejan, Roghayeh [1 ,3 ]
Ku, Anthony Y. [4 ]
Wilson, Gregory [5 ]
O'Reilly, Sean [5 ]
Soloveichik, Grigorii [6 ]
Wyatt, John [7 ]
Mac Dowell, Niall [1 ,3 ,4 ]
机构
[1] Imperial Coll London, Ctr Environm Policy, London SW7 2AZ, England
[2] Imperial Coll London, Dept Chem Engn, Clean Energy Proc CEP Lab, London SW7 2AZ, England
[3] Imperial Coll London, Sargent Ctr Proc Syst Engn, London SW7 2AZ, England
[4] Xiron Global Ltd, London W1W 5PF, England
[5] JERA Amer Inc, Houston, TX USA
[6] SolEXS Consulting, Houston, TX USA
[7] CET Consulting, Jersey, NJ USA
来源
SUSTAINABLE ENERGY & FUELS | 2024年 / 8卷 / 07期
关键词
SOLAR-ENERGY; WIND; EMISSIONS; BIOGAS;
D O I
10.1039/d3se01421e
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Alternatives to fossil fuels as energy carriers are required to reach global climate targets. Hydrogen and ammonia are promising candidates that are carbon emission-free at point of combustion. Ammonia is critically important for fertiliser production and thus global food production. Additionally, low-carbon ammonia is a potentially valuable fuel for shipping, power generation, and industry. However, ammonia production today accounts for about 2% of total global carbon dioxide emissions. Conventional ammonia production based on methane reforming can be decarbonised by using carbon capture and storage, creating so-called blue ammonia. Alternatively, low-carbon electricity from additional clean energy sources can be used for electrolytic (green) hydrogen and ammonia production. Production tax credits (PTC) for clean hydrogen production via the 45V and carbon sequestration via the 45Q under the Inflation Reduction Act (IRA) in the United States have sparked interest in large-scale commercial low-carbon ammonia projects. In this work, we analyse different blue and electrolytic low-carbon ammonia production processes under economic and practical considerations. We propose and evaluate two novel designs: integrating a biomethane supply into the reformer; and combining blue and green ammonia production processes. Results show that all low-carbon ammonia plants can significantly reduce emissions compared to the conventional process. With the production tax credits, blue ammonia is likely to be the most economical production route in the near-term, being cheaper than conventional ammonia which is not eligible for any credits. The economics of electrolytic ammonia depend heavily on the price of reliable low-carbon electricity. A levelised cost of electricity of about 35 $/MWh and lower is required for electrolytic ammonia to be competitive with blue ammonia at average gas prices and upstream emissions. Of the two novel process designs, blending in biomethane shows promise as it can lead to carbon-neutral or even carbon-negative ammonia with a near-zero cost of production when supported by 45V. Blue-green ammonia on the other hand can improve economics if upstream emissions are small and low-carbon electricity is cheap. Overall, the IRA tax credits improve the economics of low-carbon ammonia production significantly and result in it being competitive with conventional ammonia production, enabling significant carbon emission reduction. Low-carbon ammonia competitive with conventional process with policy support. Novel hybrid processes and biomethane integration can offer additional benefits.
引用
收藏
页码:1495 / 1508
页数:14
相关论文
共 50 条
  • [41] Directing the wind: Techno-economic feasibility of green ammonia for farmers and community economic viability
    Ofori-Bah, Catherine Obiribea
    Amanor-Boadu, Vincent
    FRONTIERS IN ENVIRONMENTAL SCIENCE, 2023, 10
  • [42] Techno-economic assessment of quinoa production and transformation in Morocco
    Sifeddine Rafik
    Mohamed Rahmani
    Redouane Choukr-Allah
    Mohamed El Gharous
    Juan Pablo Rodriguez Calle
    Kaoutar Filali
    Abdelaziz Hirich
    Environmental Science and Pollution Research, 2021, 28 : 46781 - 46796
  • [43] Techno-economic assessment of hydrogen production from seawater
    Dokhani, Sepanta
    Assadi, Mohsen
    Pollet, Bruno G.
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2023, 48 (26) : 9592 - 9608
  • [44] Techno-economic assessment of supercritical processes for biofuel production
    Gutierrez Ortiz, Francisco Javier
    JOURNAL OF SUPERCRITICAL FLUIDS, 2020, 160
  • [45] Techno-economic assessment of open microalgae production systems
    Hoffman, Justin
    Pate, Ronald C.
    Drennen, Thomas
    Quinn, Jason C.
    ALGAL RESEARCH-BIOMASS BIOFUELS AND BIOPRODUCTS, 2017, 23 : 51 - 57
  • [46] Techno-economic assessment of quinoa production and transformation in Morocco
    Rafik, Sifeddine
    Rahmani, Mohamed
    Choukr-Allah, Redouane
    El Gharous, Mohamed
    Rodriguez Calle, Juan Pablo
    Filali, Kaoutar
    Hirich, Abdelaziz
    ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH, 2021, 28 (34) : 46781 - 46796
  • [47] Comparative techno-economic assessment of renewable diesel production integrated with alternative hydrogen supply
    Lunardi, Pietro M.
    Julio, Priscila M.
    Bolson, Vinicius F.
    Mayer, Flávio D.
    Castilhos, Fernanda de
    International Journal of Hydrogen Energy, 2024, 89 : 820 - 835
  • [48] Techno-Economic Study of the Potential for Green Hydrogen Production in Egypt
    El-Ghetany, H. H.
    El-Awady, M. H.
    EGYPTIAN JOURNAL OF CHEMISTRY, 2023, 66 (13): : 127 - 135
  • [49] A spatially explicit techno-economic assessment of green biorefinery concepts
    Hoeltinger, Stefan
    Schmidt, Johannes
    Schoenhart, Martin
    Schmid, Erwin
    BIOFUELS BIOPRODUCTS & BIOREFINING-BIOFPR, 2014, 8 (03): : 325 - 341
  • [50] Techno-economic assessment of a power-to-green methanol plant
    Pratschner, Simon
    Radosits, Frank
    Ajanovic, Amela
    Winter, Franz
    JOURNAL OF CO2 UTILIZATION, 2023, 75