A comparative techno-economic assessment of blue, green, and hybrid ammonia production in the United States

被引:0
|
作者
Mersch, Matthias [1 ,2 ,3 ]
Sunny, Nixon [1 ,3 ]
Dejan, Roghayeh [1 ,3 ]
Ku, Anthony Y. [4 ]
Wilson, Gregory [5 ]
O'Reilly, Sean [5 ]
Soloveichik, Grigorii [6 ]
Wyatt, John [7 ]
Mac Dowell, Niall [1 ,3 ,4 ]
机构
[1] Imperial Coll London, Ctr Environm Policy, London SW7 2AZ, England
[2] Imperial Coll London, Dept Chem Engn, Clean Energy Proc CEP Lab, London SW7 2AZ, England
[3] Imperial Coll London, Sargent Ctr Proc Syst Engn, London SW7 2AZ, England
[4] Xiron Global Ltd, London W1W 5PF, England
[5] JERA Amer Inc, Houston, TX USA
[6] SolEXS Consulting, Houston, TX USA
[7] CET Consulting, Jersey, NJ USA
来源
SUSTAINABLE ENERGY & FUELS | 2024年 / 8卷 / 07期
关键词
SOLAR-ENERGY; WIND; EMISSIONS; BIOGAS;
D O I
10.1039/d3se01421e
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Alternatives to fossil fuels as energy carriers are required to reach global climate targets. Hydrogen and ammonia are promising candidates that are carbon emission-free at point of combustion. Ammonia is critically important for fertiliser production and thus global food production. Additionally, low-carbon ammonia is a potentially valuable fuel for shipping, power generation, and industry. However, ammonia production today accounts for about 2% of total global carbon dioxide emissions. Conventional ammonia production based on methane reforming can be decarbonised by using carbon capture and storage, creating so-called blue ammonia. Alternatively, low-carbon electricity from additional clean energy sources can be used for electrolytic (green) hydrogen and ammonia production. Production tax credits (PTC) for clean hydrogen production via the 45V and carbon sequestration via the 45Q under the Inflation Reduction Act (IRA) in the United States have sparked interest in large-scale commercial low-carbon ammonia projects. In this work, we analyse different blue and electrolytic low-carbon ammonia production processes under economic and practical considerations. We propose and evaluate two novel designs: integrating a biomethane supply into the reformer; and combining blue and green ammonia production processes. Results show that all low-carbon ammonia plants can significantly reduce emissions compared to the conventional process. With the production tax credits, blue ammonia is likely to be the most economical production route in the near-term, being cheaper than conventional ammonia which is not eligible for any credits. The economics of electrolytic ammonia depend heavily on the price of reliable low-carbon electricity. A levelised cost of electricity of about 35 $/MWh and lower is required for electrolytic ammonia to be competitive with blue ammonia at average gas prices and upstream emissions. Of the two novel process designs, blending in biomethane shows promise as it can lead to carbon-neutral or even carbon-negative ammonia with a near-zero cost of production when supported by 45V. Blue-green ammonia on the other hand can improve economics if upstream emissions are small and low-carbon electricity is cheap. Overall, the IRA tax credits improve the economics of low-carbon ammonia production significantly and result in it being competitive with conventional ammonia production, enabling significant carbon emission reduction. Low-carbon ammonia competitive with conventional process with policy support. Novel hybrid processes and biomethane integration can offer additional benefits.
引用
收藏
页码:1495 / 1508
页数:14
相关论文
共 50 条
  • [31] Deep learning analysis of green ammonia synthesis: Evaluating techno-economic feasibility for sustainable production
    Adeli, K.
    Nachtane, M.
    Tarfaoui, M.
    Faik, A.
    Pollet, B.G.
    Saifaoui, D.
    International Journal of Hydrogen Energy, 2024, 87 : 1224 - 1232
  • [32] Small-Scale Biomass Gasification for Green Ammonia Production in Portugal: A Techno-Economic Study
    Cardoso, Joao Sousa
    Silva, Valter
    Mayoral Chavando, Jose Antonio
    Eusebio, Daniela
    Hall, Matthew J.
    Costa, Mario
    ENERGY & FUELS, 2021, 35 (17) : 13847 - 13862
  • [33] Techno-economic comparison of ammonia production processes under various carbon tax scenarios for the economic transition from grey to blue ammonia
    Oh, Sieun
    Mun, Haneul
    Park, Jinwoo
    Lee, Inkyu
    JOURNAL OF CLEANER PRODUCTION, 2024, 434
  • [34] Techno-economic assessment of a hybrid microgrid using PSO
    Selvakumar, K.
    Anuradha, R.
    Arunkumar, Albert Paul
    MATERIALS TODAY-PROCEEDINGS, 2022, 66 : 1131 - 1139
  • [35] Techno-economic assessment of a hybrid microgrid using PSO
    Selvakumar, K.
    Anuradha, R.
    Arunkumar, Albert Paul
    MATERIALS TODAY-PROCEEDINGS, 2022, 66 : 1131 - 1139
  • [36] Techno-Economic Assessment of a Hybrid Solar Receiver and Combustor
    Lim, Jin Han
    Nathan, Graham
    Dally, Bassam
    Chinnici, Alfonso
    SOLARPACES 2015: INTERNATIONAL CONFERENCE ON CONCENTRATING SOLAR POWER AND CHEMICAL ENERGY SYSTEMS, 2016, 1734
  • [37] Membrane reactors for green hydrogen production from biogas and biomethane: A techno-economic assessment
    Ongis, Michele
    Di Marcoberardino, Gioele
    Manzolini, Giampaolo
    Gallucci, Fausto
    Binotti, Marco
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2023, 48 (51) : 19580 - 19595
  • [38] Techno-economic analysis and uncertainty assessment of green hydrogen production in future exporting countries
    Benalcazar, P.
    Komorowska, A.
    RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2024, 199
  • [39] Techno-economic assessment of waste heat recovery for green hydrogen production: a simulation study
    Frassl, Natalie
    Sistani, Nina Ranjbar
    Wimmer, Yannick
    Kapeller, Judith
    Maggauer, Klara
    Kathan, Johannes
    ELEKTROTECHNIK UND INFORMATIONSTECHNIK, 2024, 141 (05): : 288 - 298
  • [40] Comparative thermodynamic and techno-economic assessment of green methanol production from biomass through direct chemical looping processes
    Sun, Zhuang
    Aziz, Muhammad
    JOURNAL OF CLEANER PRODUCTION, 2021, 321