Predicting final ischemic stroke lesions from initial diffusion-weighted images using a deep neural network

被引:14
|
作者
Nazari-Farsani, Sanaz [1 ]
Yu, Yannan [1 ,2 ]
Armindo, Rui Duarte [1 ,3 ]
Lansberg, Maarten [4 ]
Liebeskind, David S. [5 ]
Albers, Gregory [4 ]
Christensen, Soren [4 ]
Levin, Craig S. [1 ]
Zaharchuk, Greg [1 ]
机构
[1] Stanford Univ, Dept Radiol, Stanford, CA 94305 USA
[2] Univ Massachusetts, Mem Med Ctr, Internal Med Dept, Boston, MA 02125 USA
[3] Hosp Beatriz Angelo, Dept Neuroradiol, Lisbon, Portugal
[4] Stanford Univ, Dept Neurol, Stanford, CA 94305 USA
[5] Univ Calif Los Angeles, Dept Neurol, Los Angeles, CA 90024 USA
关键词
Acute ischemic stroke; Lesion segmentation; MRI; DWI; PWI; Deep learning; INFARCT GROWTH; TISSUE; GADOLINIUM; PERFUSION;
D O I
10.1016/j.nicl.2022.103278
中图分类号
R445 [影像诊断学];
学科分类号
100207 ;
摘要
Background: For prognosis of stroke, measurement of the diffusion-perfusion mismatch is a common practice for estimating tissue at risk of infarction in the absence of timely reperfusion. However, perfusion-weighted imaging (PWI) adds time and expense to the acute stroke imaging workup. We explored whether a deep convolutional neural network (DCNN) model trained with diffusion-weighted imaging obtained at admission could predict final infarct volume and location in acute stroke patients.Methods: In 445 patients, we trained and validated an attention-gated (AG) DCNN to predict final infarcts as delineated on follow-up studies obtained 3 to 7 days after stroke. The input channels consisted of MR diffusionweighted imaging (DWI), apparent diffusion coefficients (ADC) maps, and thresholded ADC maps with values less than 620 x 10-6 mm2/s, while the output was a voxel-by-voxel probability map of tissue infarction. We evaluated performance of the model using the area under the receiver-operator characteristic curve (AUC), the Dice similarity coefficient (DSC), absolute lesion volume error, and the concordance correlation coefficient (rho c) of the predicted and true infarct volumes.Results: The model obtained a median AUC of 0.91 (IQR: 0.84-0.96). After thresholding at an infarction probability of 0.5, the median sensitivity and specificity were 0.60 (IQR: 0.16-0.84) and 0.97 (IQR: 0.93-0.99), respectively, while the median DSC and absolute volume error were 0.50 (IQR: 0.17-0.66) and 27 ml (IQR: 7-60 ml), respectively. The model's predicted lesion volumes showed high correlation with ground truth volumes (rho c = 0.73, p < 0.01). Conclusion: An AG-DCNN using diffusion information alone upon admission was able to predict infarct volumes at 3-7 days after stroke onset with comparable accuracy to models that consider both DWI and PWI. This may enable treatment decisions to be made with shorter stroke imaging protocols.
引用
收藏
页数:10
相关论文
共 50 条
  • [31] Incidence of New Diffusion-Weighted Imaging Lesions Outside the Area of Initial Hypoperfusion Within 1 Week After Acute Ischemic Stroke
    Usnich, Tatiana
    Albach, Fredrik N.
    Brunecker, Peter
    Fiebach, Jochen B.
    Nolte, Christian H.
    STROKE, 2012, 43 (10) : 2654 - 2658
  • [32] Improved Segmentation and Detection Sensitivity of Diffusion-weighted Stroke Lesions with Synthetically Enhanced Deep Learning
    Federau, Christian
    Christensen, Soren
    Scherrer, Nino
    Ospel, Johanna M.
    Schulze-Zachau, Victor
    Schmidt, Noemi
    Breit, Hanns-Christian
    Maclaren, Julian
    Lansberg, Maarten
    Kozerke, Sebastian
    RADIOLOGY-ARTIFICIAL INTELLIGENCE, 2020, 2 (05) : 1 - 8
  • [33] Ensemble of Convolutional Neural Networks Improves Automated Segmentation of Acute Ischemic Lesions Using Multiparametric Diffusion-Weighted MRI
    Winzeck, S.
    Mocking, S. J. T.
    Bezerra, R.
    Bouts, M. J. R. J.
    McIntosh, E. C.
    Diwan, I.
    Garg, P.
    Chutinet, A.
    Kimberly, W. T.
    Copen, W. A.
    Schaefer, P. W.
    Ay, H.
    Singhal, A. B.
    Kamnitsas, K.
    Glocker, B.
    Sorensen, A. G.
    Wu, O.
    AMERICAN JOURNAL OF NEURORADIOLOGY, 2019, 40 (06) : 938 - 945
  • [34] D-dimer as an independent predictor of early recurrent ischemic lesions on diffusion-weighted imaging in acute ischemic stroke
    Kang, Dong-Wha
    Yoo, Sung-Hee
    Kwon, Kyum-Yil
    Kwon, Sun U.
    Kim, Eun Kyung
    Kim, Mun Bin
    Sohn, Sung-II
    Koh, Jae-Young
    Kim, Jong S.
    STROKE, 2007, 38 (02) : 487 - 487
  • [35] Microembolic signals and patterns of diffusion-weighted MRI lesions in acute middle cerebral artery ischemic stroke
    Yun, DJ
    Shin, HY
    Park, KL
    Oh, HG
    Chung, CS
    Lee, KH
    Kim, GM
    STROKE, 2006, 37 (02) : 653 - 653
  • [37] Diffusion-weighted imaging-based radiomics for predicting 1-year ischemic stroke recurrence
    Wang, Hao
    Sun, Yi
    Zhu, Jie
    Zhuang, Yuzhong
    Song, Bin
    FRONTIERS IN NEUROLOGY, 2022, 13
  • [38] Accelerated Diffusion-Weighted MR Image Reconstruction Using Deep Neural Networks
    Aamir, Fariha
    Aslam, Ibtisam
    Arshad, Madiha
    Omer, Hammad
    JOURNAL OF DIGITAL IMAGING, 2023, 36 (01) : 276 - 288
  • [39] Accelerated Diffusion-Weighted MR Image Reconstruction Using Deep Neural Networks
    Fariha Aamir
    Ibtisam Aslam
    Madiha Arshad
    Hammad Omer
    Journal of Digital Imaging, 2023, 36 : 276 - 288
  • [40] Predicting Final Extent of Ischemic Infarction Using an Artificial Neural Network Analysis of Multiparametric MRI in Patients with Stroke
    Bagher-Ebadian, H.
    Jafari-Khouzani, K.
    Mitsias, P. D.
    Soltanian-Zadeh, H.
    Chopp, M.
    Ewing, J. R.
    IJCNN: 2009 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS, VOLS 1- 6, 2009, : 2119 - +