Predicting final ischemic stroke lesions from initial diffusion-weighted images using a deep neural network

被引:14
|
作者
Nazari-Farsani, Sanaz [1 ]
Yu, Yannan [1 ,2 ]
Armindo, Rui Duarte [1 ,3 ]
Lansberg, Maarten [4 ]
Liebeskind, David S. [5 ]
Albers, Gregory [4 ]
Christensen, Soren [4 ]
Levin, Craig S. [1 ]
Zaharchuk, Greg [1 ]
机构
[1] Stanford Univ, Dept Radiol, Stanford, CA 94305 USA
[2] Univ Massachusetts, Mem Med Ctr, Internal Med Dept, Boston, MA 02125 USA
[3] Hosp Beatriz Angelo, Dept Neuroradiol, Lisbon, Portugal
[4] Stanford Univ, Dept Neurol, Stanford, CA 94305 USA
[5] Univ Calif Los Angeles, Dept Neurol, Los Angeles, CA 90024 USA
关键词
Acute ischemic stroke; Lesion segmentation; MRI; DWI; PWI; Deep learning; INFARCT GROWTH; TISSUE; GADOLINIUM; PERFUSION;
D O I
10.1016/j.nicl.2022.103278
中图分类号
R445 [影像诊断学];
学科分类号
100207 ;
摘要
Background: For prognosis of stroke, measurement of the diffusion-perfusion mismatch is a common practice for estimating tissue at risk of infarction in the absence of timely reperfusion. However, perfusion-weighted imaging (PWI) adds time and expense to the acute stroke imaging workup. We explored whether a deep convolutional neural network (DCNN) model trained with diffusion-weighted imaging obtained at admission could predict final infarct volume and location in acute stroke patients.Methods: In 445 patients, we trained and validated an attention-gated (AG) DCNN to predict final infarcts as delineated on follow-up studies obtained 3 to 7 days after stroke. The input channels consisted of MR diffusionweighted imaging (DWI), apparent diffusion coefficients (ADC) maps, and thresholded ADC maps with values less than 620 x 10-6 mm2/s, while the output was a voxel-by-voxel probability map of tissue infarction. We evaluated performance of the model using the area under the receiver-operator characteristic curve (AUC), the Dice similarity coefficient (DSC), absolute lesion volume error, and the concordance correlation coefficient (rho c) of the predicted and true infarct volumes.Results: The model obtained a median AUC of 0.91 (IQR: 0.84-0.96). After thresholding at an infarction probability of 0.5, the median sensitivity and specificity were 0.60 (IQR: 0.16-0.84) and 0.97 (IQR: 0.93-0.99), respectively, while the median DSC and absolute volume error were 0.50 (IQR: 0.17-0.66) and 27 ml (IQR: 7-60 ml), respectively. The model's predicted lesion volumes showed high correlation with ground truth volumes (rho c = 0.73, p < 0.01). Conclusion: An AG-DCNN using diffusion information alone upon admission was able to predict infarct volumes at 3-7 days after stroke onset with comparable accuracy to models that consider both DWI and PWI. This may enable treatment decisions to be made with shorter stroke imaging protocols.
引用
收藏
页数:10
相关论文
共 50 条
  • [21] Discrepancy between perfusion- and diffusion-weighted images in ischemic stroke A case report
    Hur, Wook
    Kim, Bum Joon
    Shin, Byoung-Soo
    Kang, Hyun Goo
    MEDICINE, 2018, 97 (52)
  • [22] Predicting ischemic stroke tissue fate using a deep convolutional neural network on source magnetic resonance perfusion images
    Ho, King Chung
    Scalzo, Fabien
    Sarma, Karthik, V
    Speier, William
    El-Saden, Suzie
    Arnold, Corey
    JOURNAL OF MEDICAL IMAGING, 2019, 6 (02)
  • [23] Use of Deep Learning to Predict Final Ischemic Stroke Lesions From Initial Magnetic Resonance Imaging
    Yu, Yannan
    Xie, Yuan
    Thamm, Thoralf
    Gong, Enhao
    Ouyang, Jiahong
    Huang, Charles
    Christensen, Soren
    Marks, Michael P.
    Lansberg, Maarten G.
    Albers, Gregory W.
    Zaharchuk, Greg
    JAMA NETWORK OPEN, 2020, 3 (03)
  • [24] Ischemic lesions on diffusion-weighted MR images following TIA may result from small cardiogenic embolism
    Naritomi, H
    Uno, H
    Oomura, M
    Nagano, K
    Kajimoto, K
    Yamawaki, T
    STROKE, 2002, 33 (01) : 365 - 365
  • [25] Hyperacute ischemic stroke without lesions on diffusion-weighted imaging in a patient treated with rtPA thrombolysis
    Jing, Zhen
    Zhang, Shijun
    Tang, Jingjing
    Xu, Anding
    Ruan, Yiwen
    Huang, Li'an
    CLINICAL CASE REPORTS, 2014, 2 (03): : 70 - 73
  • [26] Reversibility of Diffusion-Weighted Imaging Lesions in Patients With Ischemic Stroke in the WAKE-UP Trial
    Scheldeman, Lauranne
    Wouters, Anke
    Bertels, Jeroen
    Dupont, Patrick
    Cheng, Bastian
    Ebinger, Martin
    Endres, Matthias
    Fiebach, Jochen B.
    Gerloff, Christian
    Muir, Keith W.
    Nighoghossian, Norbert
    Pedraza, Salvador
    Simonsen, Claus Z.
    Thijs, Vincent
    Thomalla, Goetz
    Lemmens, Robin
    STROKE, 2023, 54 (06) : 1560 - 1568
  • [27] Classification of Ischemic Stroke with Convolutional Neural Network (CNN) approach on b-1000 Diffusion-Weighted (DW) MRI
    Nugroho, Andi Kurniawan
    Nugraheni, Dinar Mutiara Kusumo
    Putranto, Terawan Agus
    Purnama, I. Ketut Eddy
    Purnomo, Mauridhi Hery
    EMITTER-INTERNATIONAL JOURNAL OF ENGINEERING TECHNOLOGY, 2022, 10 (01) : 195 - 216
  • [28] Perfusion-weighted MRI in human acute ischemic stroke:: A comparison with the progression of the infarct on diffusion-weighted images
    Aronen, HJ
    Perkiö, J
    Karonen, JO
    Vanninen, RL
    Ostergaard, L
    Liu, YW
    Könönen, M
    Vanninen, EJ
    Soimakallio, S
    Kuikka, JT
    ACADEMIC RADIOLOGY, 2002, 9 : S160 - S164
  • [29] Supervised denoising of diffusion-weighted magnetic resonance images using a convolutional neural network and transfer learning
    Jurek, Jakub
    Materka, Andrzej
    Ludwisiak, Kamil
    Majos, Agata
    Gorczewski, Kamil
    Cepuch, Kamil
    Zawadzka, Agata
    BIOCYBERNETICS AND BIOMEDICAL ENGINEERING, 2023, 43 (01) : 206 - 232
  • [30] Diffusion-weighted MRI of intracerebral hemorrhage clinically undifferentiated from ischemic stroke
    Chung, SP
    Ha, YR
    Kim, SW
    Yoo, IS
    AMERICAN JOURNAL OF EMERGENCY MEDICINE, 2003, 21 (03): : 236 - 240