Predicting final ischemic stroke lesions from initial diffusion-weighted images using a deep neural network

被引:14
|
作者
Nazari-Farsani, Sanaz [1 ]
Yu, Yannan [1 ,2 ]
Armindo, Rui Duarte [1 ,3 ]
Lansberg, Maarten [4 ]
Liebeskind, David S. [5 ]
Albers, Gregory [4 ]
Christensen, Soren [4 ]
Levin, Craig S. [1 ]
Zaharchuk, Greg [1 ]
机构
[1] Stanford Univ, Dept Radiol, Stanford, CA 94305 USA
[2] Univ Massachusetts, Mem Med Ctr, Internal Med Dept, Boston, MA 02125 USA
[3] Hosp Beatriz Angelo, Dept Neuroradiol, Lisbon, Portugal
[4] Stanford Univ, Dept Neurol, Stanford, CA 94305 USA
[5] Univ Calif Los Angeles, Dept Neurol, Los Angeles, CA 90024 USA
关键词
Acute ischemic stroke; Lesion segmentation; MRI; DWI; PWI; Deep learning; INFARCT GROWTH; TISSUE; GADOLINIUM; PERFUSION;
D O I
10.1016/j.nicl.2022.103278
中图分类号
R445 [影像诊断学];
学科分类号
100207 ;
摘要
Background: For prognosis of stroke, measurement of the diffusion-perfusion mismatch is a common practice for estimating tissue at risk of infarction in the absence of timely reperfusion. However, perfusion-weighted imaging (PWI) adds time and expense to the acute stroke imaging workup. We explored whether a deep convolutional neural network (DCNN) model trained with diffusion-weighted imaging obtained at admission could predict final infarct volume and location in acute stroke patients.Methods: In 445 patients, we trained and validated an attention-gated (AG) DCNN to predict final infarcts as delineated on follow-up studies obtained 3 to 7 days after stroke. The input channels consisted of MR diffusionweighted imaging (DWI), apparent diffusion coefficients (ADC) maps, and thresholded ADC maps with values less than 620 x 10-6 mm2/s, while the output was a voxel-by-voxel probability map of tissue infarction. We evaluated performance of the model using the area under the receiver-operator characteristic curve (AUC), the Dice similarity coefficient (DSC), absolute lesion volume error, and the concordance correlation coefficient (rho c) of the predicted and true infarct volumes.Results: The model obtained a median AUC of 0.91 (IQR: 0.84-0.96). After thresholding at an infarction probability of 0.5, the median sensitivity and specificity were 0.60 (IQR: 0.16-0.84) and 0.97 (IQR: 0.93-0.99), respectively, while the median DSC and absolute volume error were 0.50 (IQR: 0.17-0.66) and 27 ml (IQR: 7-60 ml), respectively. The model's predicted lesion volumes showed high correlation with ground truth volumes (rho c = 0.73, p < 0.01). Conclusion: An AG-DCNN using diffusion information alone upon admission was able to predict infarct volumes at 3-7 days after stroke onset with comparable accuracy to models that consider both DWI and PWI. This may enable treatment decisions to be made with shorter stroke imaging protocols.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] Predicting the Severity of Neurological Impairment Caused by Ischemic Stroke Using Deep Learning Based on Diffusion-Weighted Images
    Zeng, Ying
    Long, Chen
    Zhao, Wei
    Liu, Jun
    JOURNAL OF CLINICAL MEDICINE, 2022, 11 (14)
  • [2] A Radiomic-based Method for Predicting the Prognosis of Ischemic Stroke from Diffusion-weighted Imaging Images
    Li, Cheng
    Wu, Guoqing
    Lin, Jixian
    Zhou, Guohui
    Yu, Jinhua
    2021 14TH INTERNATIONAL CONGRESS ON IMAGE AND SIGNAL PROCESSING, BIOMEDICAL ENGINEERING AND INFORMATICS (CISP-BMEI 2021), 2021,
  • [3] Deep Learning-Based Automatic Classification of Ischemic Stroke Subtype Using Diffusion-Weighted Images
    Ryu, Wi-Sun
    Schellingerhout, Dawid
    Lee, Hoyoun
    Lee, Keon-Joo
    Kim, Chi Kyung
    Kim, Beom Joon
    Chung, Jong-Won
    Lim, Jae-Sung
    Kim, Joon-Tae
    Kim, Dae-Hyun
    Cha, Jae-Kwan
    Sunwoo, Leonard
    Kim, Dongmin
    Suh, Sang-Il
    Bang, Oh Young
    Bae, Hee-Joon
    Kim, Dong-Eog
    JOURNAL OF STROKE, 2024, 26 (02) : 300 - 311
  • [4] Acute Ischemic Stroke With Initial Negative Diffusion-Weighted Imaging Findings
    Yoon, C. J.
    Kim, W.
    ANNALS OF EMERGENCY MEDICINE, 2008, 52 (04) : S157 - S158
  • [5] Ischemic Lesions In Patients With Migrainous Stroke: A Diffusion-weighted MRI Study
    Wolf, Marc E.
    Szabo, Kristina
    Grielbe, Martin
    Foerster, Alex
    Gass, Achim
    Hennerici, Michael G.
    Kern, Rolf
    STROKE, 2009, 40 (04) : E195 - E195
  • [6] Deep symmetric three-dimensional convolutional neural networks for identifying acute ischemic stroke via diffusion-weighted images
    Cui, Liyuan
    Han, Shanhua
    Qi, Shouliang
    Duan, Yang
    Kang, Yan
    Luo, Yu
    JOURNAL OF X-RAY SCIENCE AND TECHNOLOGY, 2021, 29 (04) : 551 - 566
  • [7] Biphasic manifestation of ischemic lesions on diffusion-weighted images following transient ischemic attacks
    Uno, H
    Nagano, K
    Nakajima, T
    Naritomi, H
    STROKE, 2005, 36 (02) : 444 - 444
  • [8] The Impact of Acute Ischemic Lesions on Diffusion-Weighted Images in Transient Ischemic Attack Patients
    Kuwashiro, Takahiro
    Yasaka, Masahiro
    Wakugawa, Yoshiyuki
    Maeda, Koichiro
    Uwatoko, Takeshi
    Tsumoto, Tomoyuki
    Okada, Yasushi
    CEREBROVASCULAR DISEASES, 2013, 36 : 24 - 24
  • [9] Significance of acute ischemic lesions on diffusion-weighted images in transient ischemic attack patients
    Kuwashiro, T.
    Yasaka, M.
    Wakugawa, Y.
    Maeda, K.
    Uwatoko, T.
    Tsumoto, T.
    Okada, Y.
    CEREBROVASCULAR DISEASES, 2014, 37 : 667 - 667
  • [10] Predicting Hypoperfusion Lesion and Target Mismatch in Stroke from Diffusion-weighted MRI Using Deep Learning
    Yu, Yannan
    Christensen, Soren
    Ouyang, Jiahong
    Scalzo, Fabien
    Liebeskind, David S.
    Lansberg, Maarten G.
    Albers, Gregory W.
    Zaharchuk, Greg
    RADIOLOGY, 2023, 307 (01)