RespirAnalyzer: an R package for analyzing data from continuous monitoring of respiratory signals

被引:0
|
作者
Zhang, Teng [1 ]
Dong, Xinzheng [2 ]
Wang, Dandan [1 ]
Huang, Chen [3 ]
Zhang, Xiaohua Douglas [4 ]
机构
[1] Univ Macau, Fac Hlth Sci, Dept Publ Hlth & Med Adm, Taipa 999078, Macau, Peoples R China
[2] Zhuhai Coll Sci & Technol, Zhuhai Lab Key Lab Symbol Computat & Knowledge Eng, Minist Educ, Zhuhai 519041, Peoples R China
[3] Macau Univ Sci & Technol, Dr Nehers Biophys Lab Innovat Drug Discovery, Taipa 999078, Macau, Peoples R China
[4] Univ Kentucky, Dept Biostat, 725 Rose St, Lexington, KY 40536 USA
来源
BIOINFORMATICS ADVANCES | 2024年 / 4卷 / 01期
基金
美国国家卫生研究院;
关键词
TIME-SERIES; COMPLEXITY; DYNAMICS; MULTIFRACTALITY;
D O I
10.1093/bioadv/vbae003
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Motivation The analysis of data obtained from continuous monitoring of respiratory signals (CMRS) holds significant importance in improving patient care, optimizing sports performance, and advancing scientific understanding in the field of respiratory health.Results The R package RespirAnalyzer provides an analytic tool specifically for feature extraction, fractal and complexity analysis for CMRS data. The package covers a wide and comprehensive range of data analysis methods including obtaining inter-breath intervals (IBI) series, plotting time series, obtaining summary statistics of IBI series, conducting power spectral density, multifractal detrended fluctuation analysis (MFDFA) and multiscale sample entropy analysis, fitting the MFDFA results with the extended binomial multifractal model, displaying results using various plots, etc. This package has been developed from our work in directly analyzing CMRS data and is anticipated to assist fellow researchers in computing the related features of their CMRS data, enabling them to delve into the clinical significance inherent in these features.Availability and implementation The package for Windows is available from both Comprehensive R Archive Network (CRAN): https://cran.r-project.org/web/packages/RespirAnalyzer/index.html and GitHub: https://github.com/dongxinzheng/RespirAnalyzer.
引用
收藏
页数:6
相关论文
共 50 条
  • [41] QuICSeedR: an R package for analyzing fluorophore-assisted seed amplification assay data
    Li, Manci
    Bryant, Damani N.
    Gresch, Sarah
    Milstein, Marissa S.
    Christenson, Peter R.
    Lichtenberg, Stuart S.
    Larsen, Peter A.
    Oh, Sang-Hyun
    BIOINFORMATICS, 2025, 41 (01)
  • [42] APCI: An R and Stata Package for Visualizing and Analyzing Age-Period-Cohort Data
    Xu, Jiahui
    Luo, Liying
    R JOURNAL, 2022, 14 (02): : 77 - 95
  • [43] swgee: An R Package for Analyzing Longitudinal Data with Response Missingness and Covariate Measurement Error
    Xiong, Juan
    Yi, Grace Y.
    R JOURNAL, 2019, 11 (01): : 416 - 426
  • [44] Continuous monitoring of cardiac output from TCG signals
    Keenan, DB
    BIOMEDICAL SCIENCES INSTRUMENTATION, VOL 40, 2004, 449 : 343 - 349
  • [45] ctmm: anR package for analyzing animal relocation data as a continuous-time stochastic process
    Calabrese, Justin M.
    Fleming, Chris H.
    Gurarie, Eliezer
    METHODS IN ECOLOGY AND EVOLUTION, 2016, 7 (09): : 1124 - 1132
  • [46] rLDCP: R Package for Text Generation from Data
    Conde-Clemente, Patricia
    Alonso, Jose M.
    Trivino, Gracian
    2017 IEEE INTERNATIONAL CONFERENCE ON FUZZY SYSTEMS (FUZZ-IEEE), 2017,
  • [47] fcfdr: an R package to leverage continuous and binary functional genomic data in GWAS
    Hutchinson, Anna
    Liley, James
    Wallace, Chris
    BMC BIOINFORMATICS, 2022, 23 (01)
  • [48] fcfdr: an R package to leverage continuous and binary functional genomic data in GWAS
    Anna Hutchinson
    James Liley
    Chris Wallace
    BMC Bioinformatics, 23
  • [49] Learning from Data Using the R Package "frbs"
    Septem Riza, Lala
    Bergmeir, Christoph
    Herrera, Francisco
    Manuel Benitez, Jose
    2014 IEEE INTERNATIONAL CONFERENCE ON FUZZY SYSTEMS (FUZZ-IEEE), 2014, : 2149 - 2155
  • [50] R453Plus1Toolbox: an R/Bioconductor package for analyzing Roche 454 Sequencing data
    Klein, Hans-Ulrich
    Bartenhagen, Christoph
    Kohlmann, Alexander
    Grossmann, Vera
    Ruckert, Christian
    Haferlach, Torsten
    Dugas, Martin
    BIOINFORMATICS, 2011, 27 (08) : 1162 - 1163