Diagnosing and Correcting the Failure of the Solid-State Polymer Electrolyte for Enhancing Solid-State Lithium-Sulfur Batteries

被引:27
|
作者
Meng, Xiangyu [1 ]
Liu, Yuzhao [1 ]
Ma, Yanfu [2 ]
Boyjoo, Yash [2 ]
Liu, Jian [2 ]
Qiu, Jieshan [3 ]
Wang, Zhiyu [1 ,4 ]
机构
[1] Dalian Univ Technol, Sch Chem Engn, State Key Lab Fine Chem, Liaoning Key Lab Energy Mat & Chem Engn, Dalian 116024, Peoples R China
[2] Chinese Acad Sci, Dalian Inst Chem Phys, State Key Lab Catalysis, Dalian 116023, Peoples R China
[3] Beijing Univ Chem Technol, Coll Chem Engn, Beijing 100029, Peoples R China
[4] Valiant Co Ltd, Branch New Mat Dev, Yantai 265503, Peoples R China
基金
中国国家自然科学基金;
关键词
electrocatalysis; failure mechanisms; Li-S batteries; solid-state batteries; solid-state polymer electrolytes; LI-S BATTERIES; HIGH-ENERGY; PERFORMANCE; INTERFACE;
D O I
10.1002/adma.202212039
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Solid-state polymer electrolytes (SPEs) attract great interest in developing high-performance yet reliable solid-state batteries. However, understanding of the failure mechanism of the SPE and SPE-based solid-state batteries remains in its infancy, posing a great barrier to practical solid-state batteries. Herein, the high accumulation and clogging of "dead" lithium polysulfides (LiPS) on the interface between the cathode and SPE with intrinsic diffusion limitation is identified as a critical failure cause of SPE-based solid-state Li-S batteries. It induces a poorly reversible chemical environment with retarded kinetics on the cathode-SPE interface and in bulk SPEs, starving the Li-S redox in solid-state cells. This observation is different from the case in liquid electrolytes with free solvent and charge carriers, where LiPS dissolve but remain alive for electrochemical/chemical redox without interfacial clogging. Electrocatalysis demonstrates the feasibility of tailoring the chemical environment in diffusion-restricted reaction media for reducing Li-S redox failure in the SPE. It enables Ah-level solid-state Li-S pouch cells with a high specific energy of 343 Wh kg(-1) on the cell level. This work may shed new light on the understanding of the failure mechanism of SPE for bottom-up improvement of solid-state Li-S batteries.
引用
收藏
页数:10
相关论文
共 50 条
  • [21] Solid-State Electrolytes in Lithium-Sulfur Batteries: Latest Progresses and Prospects
    Xian, Chunxiang
    Wang, Qiyue
    Xia, Yang
    Cao, Feng
    Shen, Shenghui
    Zhang, Yongqi
    Chen, Minghua
    Zhong, Yu
    Zhang, Jun
    He, Xinping
    Xia, Xinhui
    Zhang, Wenkui
    Tu, Jiangping
    SMALL, 2023, 19 (24)
  • [22] Solid-State Electrolytes for Lithium-Sulfur Batteries: Challenges, Progress, and Strategies
    Zhu, Qiancheng
    Ye, Chun
    Mao, Deyu
    NANOMATERIALS, 2022, 12 (20)
  • [23] A Large-Scale Fabrication of Flexible, Ultrathin, and Robust Solid Electrolyte for Solid-State Lithium-Sulfur Batteries
    Nie, Lu
    Zhu, Jinling
    Wu, Xiaoyan
    Zhang, Mengtian
    Xiao, Xiao
    Gao, Runhua
    Wu, Xinru
    Zhu, Yanfei
    Chen, Shaojie
    Han, Zhiyuan
    Yu, Yi
    Wang, Shaogang
    Ling, Shengjie
    Zhou, Guangmin
    ADVANCED MATERIALS, 2024, 36 (29)
  • [24] Particles in composite polymer electrolyte for solid-state lithium batteries: A review
    Meng, Nan
    Zhu, Xiaogang
    Lian, Fang
    PARTICUOLOGY, 2022, 60 : 14 - 36
  • [25] Macromolecular Design of Lithium Conductive Polymer as Electrolyte for Solid-State Lithium Batteries
    Meng, Nan
    Lian, Fang
    Cui, Guanglei
    SMALL, 2021, 17 (03)
  • [26] An Advanced Gel Polymer Electrolyte for Solid-State Lithium Metal Batteries
    Xian, Chunxiang
    Zhang, Shengzhao
    Liu, Ping
    Huang, Lei
    He, Xinping
    Shen, Shenghui
    Cao, Feng
    Liang, Xinqi
    Wang, Chen
    Wan, Wangjun
    Zhang, Yongqi
    Liu, Xin
    Zhong, Yu
    Xia, Yang
    Chen, Minghua
    Zhang, Wenkui
    Xia, Xinhui
    Tu, Jiangping
    SMALL, 2023, 20 (15)
  • [27] A Ceramic Rich Quaternary Composite Solid-State Electrolyte for Solid-State Lithium Metal Batteries
    Al-Salih, Hilal
    Cui, Mengyang
    Yim, Chae-Ho
    Sadighi, Zoya
    Yan, Shuo
    Karkar, Zouina
    Goward, Gillian R.
    Baranova, Elena A.
    Abu-Lebdeh, Yaser
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2022, 169 (08)
  • [28] A Flexible Ceramic/Polymer Hybrid Solid Electrolyte for Solid-State Lithium Metal Batteries
    Pan, Kecheng
    Zhang, Lan
    Qian, Weiwei
    Wu, Xiangkun
    Dong, Kun
    Zhang, Haitao
    Zhang, Suojiang
    ADVANCED MATERIALS, 2020, 32 (17)
  • [29] Enhancing interfacial stability in solid-state lithium batteries with polymer/garnet solid electrolyte and composite cathode framework
    Long Chen
    Xiaoming Qiu
    Zhiming Bai
    Li-Zhen Fan
    Journal of Energy Chemistry, 2021, 52 (01) : 210 - 217
  • [30] Enhancing interfacial stability in solid-state lithium batteries with polymer/garnet solid electrolyte and composite cathode framework
    Chen, Long
    Qiu, Xiaoming
    Bai, Zhiming
    Fan, Li-Zhen
    JOURNAL OF ENERGY CHEMISTRY, 2021, 52 (52): : 210 - 217