Solid-State Electrolytes for Lithium-Sulfur Batteries: Challenges, Progress, and Strategies

被引:17
|
作者
Zhu, Qiancheng [1 ]
Ye, Chun [1 ]
Mao, Deyu [1 ]
机构
[1] Guangxi Univ Sci & Technol, Sch Mech & Automot Engn, Liuzhou 545006, Peoples R China
基金
中国国家自然科学基金;
关键词
lithium-sulfur battery; solid electrolyte; polymer electrolyte; inorganic solid electrolyte; composite electrolyte; GEL POLYMER ELECTROLYTE; HIGH IONIC-CONDUCTIVITY; RECHARGEABLE LITHIUM; MECHANICAL STRENGTH; SEPARATOR; INTERFACE; DENDRITE; LAYER; SUPPRESSION; INTERPHASE;
D O I
10.3390/nano12203612
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Lithium-sulfur batteries (LSBs) represent a promising next-generation energy storage system, with advantages such as high specific capacity (1675 mAh g(-1)), abundant resources, low price, and ecological friendliness. During the application of liquid electrolytes, the flammability of organic electrolytes, and the dissolution/shuttle of polysulfide seriously damage the safety and the cycle life of lithium-sulfur batteries. Replacing a liquid electrolyte with a solid one is a good solution, while the higher mechanical strength of solid-state electrolytes (SSEs) has an inhibitory effect on the growth of lithium dendrites. However, the lower ionic conductivity, poor interfacial contact, and relatively narrow electrochemical window of solid-state electrolytes limit the commercialization of solid-state lithium-sulfur batteries (SSLSBs). This review describes the research progress in LSBs and the challenges faced by SSEs, which are classified as polymer electrolytes, inorganic solid electrolytes, and composite electrolytes. The advantages, as well as the disadvantages of various types of electrolytes, the common coping strategies to improve performance, and future development trends, are systematically described.
引用
收藏
页数:22
相关论文
共 50 条
  • [1] Solid-State Electrolytes for Lithium-Sulfur Batteries
    Zhang Huiming
    Guo Cheng
    Nuli Yanna
    Yang Jun
    Wang Jiulin
    [J]. Transactions of Nanjing University of Aeronautics and Astronautics, 2018, 35 (04) : 565 - 577
  • [2] Progress and Perspective of Solid-State Lithium-Sulfur Batteries
    Lei, Danni
    Shi, Kai
    Ye, Heng
    Wan, Zipei
    Wang, Yanyan
    Shen, Lu
    Li, Baohua
    Yang, Quan-Hong
    Kang, Feiyu
    He, Yan-Bing
    [J]. ADVANCED FUNCTIONAL MATERIALS, 2018, 28 (38)
  • [3] Solid-state electrolytes for solid-state lithium-sulfur batteries:Comparisons, advances and prospects
    Xin Liang
    Lulu Wang
    Xiaolong Wu
    Xuyong Feng
    Qiujie Wu
    Yi Sun
    Hongfa Xiang
    Jiazhao Wang
    [J]. Journal of Energy Chemistry, 2022, 73 (10) : 370 - 386
  • [4] Solid-state electrolytes for solid-state lithium-sulfur batteries: Comparisons, advances and prospects
    Liang, Xin
    Wang, Lulu
    Wu, Xiaolong
    Feng, Xuyong
    Wu, Qiujie
    Sun, Yi
    Xiang, Hongfa
    Wang, Jiazhao
    [J]. JOURNAL OF ENERGY CHEMISTRY, 2022, 73 : 370 - 386
  • [5] Polymer Electrolytes for Lithium-Sulfur Batteries: Progress and Challenges
    Jia, Mingxun
    Li, Tunan
    Yang, Daotong
    Lu, Luhua
    Duan, Limei
    Liu, Jinghai
    Wu, Tong
    [J]. BATTERIES-BASEL, 2023, 9 (10):
  • [6] Solid-state lithium-sulfur batteries: Advances, challenges and perspectives
    Ding, Bing
    Wang, Jie
    Fan, Zengjie
    Chen, Shuang
    Lin, Qingyang
    Lu, Xiangjun
    Dou, Hui
    Nanjundan, Ashok Kumar
    Yushin, Gleb
    Zhang, Xiaogang
    Yamauchi, Yusuke
    [J]. MATERIALS TODAY, 2020, 40 : 114 - 131
  • [7] Solid-State Electrolytes in Lithium-Sulfur Batteries: Latest Progresses and Prospects
    Xian, Chunxiang
    Wang, Qiyue
    Xia, Yang
    Cao, Feng
    Shen, Shenghui
    Zhang, Yongqi
    Chen, Minghua
    Zhong, Yu
    Zhang, Jun
    He, Xinping
    Xia, Xinhui
    Zhang, Wenkui
    Tu, Jiangping
    [J]. SMALL, 2023, 19 (24)
  • [8] Exploring the concordant solid-state electrolytes for all-solid-state lithium-sulfur batteries
    Zhu, Xinxin
    Jiang, Wei
    Zhao, Shu
    Huang, Renzhi
    Ling, Min
    Liang, Chengdu
    Wang, Liguang
    [J]. NANO ENERGY, 2022, 96
  • [9] Hybrid electrolytes for solid-state lithium batteries: Challenges, progress, and prospects
    Vu, Trang Thi
    Cheon, Hyeong Jun
    Shin, Seo Young
    Jeong, Ganghoon
    Wi, Eunsol
    Chang, Mincheol
    [J]. ENERGY STORAGE MATERIALS, 2023, 61
  • [10] Toward Practical Solid-State Lithium-Sulfur Batteries: Challenges and Perspectives
    Ohno, Saneyuki
    Zeier, Wolfgang G.
    [J]. ACCOUNTS OF MATERIALS RESEARCH, 2021, 2 (10): : 869 - 880