Diagnosing and Correcting the Failure of the Solid-State Polymer Electrolyte for Enhancing Solid-State Lithium-Sulfur Batteries

被引:27
|
作者
Meng, Xiangyu [1 ]
Liu, Yuzhao [1 ]
Ma, Yanfu [2 ]
Boyjoo, Yash [2 ]
Liu, Jian [2 ]
Qiu, Jieshan [3 ]
Wang, Zhiyu [1 ,4 ]
机构
[1] Dalian Univ Technol, Sch Chem Engn, State Key Lab Fine Chem, Liaoning Key Lab Energy Mat & Chem Engn, Dalian 116024, Peoples R China
[2] Chinese Acad Sci, Dalian Inst Chem Phys, State Key Lab Catalysis, Dalian 116023, Peoples R China
[3] Beijing Univ Chem Technol, Coll Chem Engn, Beijing 100029, Peoples R China
[4] Valiant Co Ltd, Branch New Mat Dev, Yantai 265503, Peoples R China
基金
中国国家自然科学基金;
关键词
electrocatalysis; failure mechanisms; Li-S batteries; solid-state batteries; solid-state polymer electrolytes; LI-S BATTERIES; HIGH-ENERGY; PERFORMANCE; INTERFACE;
D O I
10.1002/adma.202212039
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Solid-state polymer electrolytes (SPEs) attract great interest in developing high-performance yet reliable solid-state batteries. However, understanding of the failure mechanism of the SPE and SPE-based solid-state batteries remains in its infancy, posing a great barrier to practical solid-state batteries. Herein, the high accumulation and clogging of "dead" lithium polysulfides (LiPS) on the interface between the cathode and SPE with intrinsic diffusion limitation is identified as a critical failure cause of SPE-based solid-state Li-S batteries. It induces a poorly reversible chemical environment with retarded kinetics on the cathode-SPE interface and in bulk SPEs, starving the Li-S redox in solid-state cells. This observation is different from the case in liquid electrolytes with free solvent and charge carriers, where LiPS dissolve but remain alive for electrochemical/chemical redox without interfacial clogging. Electrocatalysis demonstrates the feasibility of tailoring the chemical environment in diffusion-restricted reaction media for reducing Li-S redox failure in the SPE. It enables Ah-level solid-state Li-S pouch cells with a high specific energy of 343 Wh kg(-1) on the cell level. This work may shed new light on the understanding of the failure mechanism of SPE for bottom-up improvement of solid-state Li-S batteries.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] Thin Solid Electrolyte Separators for Solid-State Lithium-Sulfur Batteries
    Kim, Soochan
    Chart, Yvonne A.
    Narayanan, Sudarshan
    Pasta, Mauro
    [J]. NANO LETTERS, 2022, 22 (24) : 10176 - 10183
  • [2] Solid-State Electrolytes for Lithium-Sulfur Batteries
    Zhang Huiming
    Guo Cheng
    Nuli Yanna
    Yang Jun
    Wang Jiulin
    [J]. Transactions of Nanjing University of Aeronautics and Astronautics, 2018, 35 (04) : 565 - 577
  • [3] Solid-state electrolytes for solid-state lithium-sulfur batteries:Comparisons, advances and prospects
    Xin Liang
    Lulu Wang
    Xiaolong Wu
    Xuyong Feng
    Qiujie Wu
    Yi Sun
    Hongfa Xiang
    Jiazhao Wang
    [J]. Journal of Energy Chemistry, 2022, 73 (10) : 370 - 386
  • [4] Solid-state electrolytes for solid-state lithium-sulfur batteries: Comparisons, advances and prospects
    Liang, Xin
    Wang, Lulu
    Wu, Xiaolong
    Feng, Xuyong
    Wu, Qiujie
    Sun, Yi
    Xiang, Hongfa
    Wang, Jiazhao
    [J]. JOURNAL OF ENERGY CHEMISTRY, 2022, 73 : 370 - 386
  • [5] A solid-state electrolyte for electrochemical lithium-sulfur cells
    Huang, Yi-Chen
    Ye, Bo-Xian
    Chung, Sheng-Heng
    [J]. RSC ADVANCES, 2024, 14 (06) : 4025 - 4033
  • [6] The Discharge Mechanism for Solid-State Lithium-Sulfur Batteries
    Nagai, Erika
    Arthur, Timothy S.
    Bonnick, Patrick
    Suto, Koji
    Muldoon, John
    [J]. MRS ADVANCES, 2019, 4 (49) : 2627 - 2634
  • [7] Progress and Perspective of Solid-State Lithium-Sulfur Batteries
    Lei, Danni
    Shi, Kai
    Ye, Heng
    Wan, Zipei
    Wang, Yanyan
    Shen, Lu
    Li, Baohua
    Yang, Quan-Hong
    Kang, Feiyu
    He, Yan-Bing
    [J]. ADVANCED FUNCTIONAL MATERIALS, 2018, 28 (38)
  • [8] The Discharge Mechanism for Solid-State Lithium-Sulfur Batteries
    Nagai Erika
    Timothy S. Arthur
    Patrick Bonnick
    Koji Suto
    Muldoon John
    [J]. MRS Advances, 2019, 4 : 2627 - 2634
  • [9] Towards safe lithium-sulfur batteries from liquid-state electrolyte to solid-state electrolyte
    Pang, Zhiyuan
    Zhang, Hongzhou
    Wang, Lu
    Song, Dawei
    Shi, Xixi
    Ma, Yue
    Kong, Linglong
    Zhang, Lianqi
    [J]. FRONTIERS OF MATERIALS SCIENCE, 2023, 17 (01)
  • [10] Towards safe lithium-sulfur batteries from liquid-state electrolyte to solid-state electrolyte
    Zhiyuan Pang
    Hongzhou Zhang
    Lu Wang
    Dawei Song
    Xixi Shi
    Yue Ma
    Linglong Kong
    Lianqi Zhang
    [J]. Frontiers of Materials Science, 2023, 17