A solid-state electrolyte for electrochemical lithium-sulfur cells

被引:2
|
作者
Huang, Yi-Chen [1 ]
Ye, Bo-Xian [1 ]
Chung, Sheng-Heng [1 ,2 ]
机构
[1] Natl Cheng Kung Univ, Dept Mat Sci & Engn, 1 Univ Rd, Tainan 70101, Taiwan
[2] Natl Cheng Kung Univ, Hierarch Green Energy Mat Res Ctr, 1,Univ Rd, Tainan 70101, Taiwan
关键词
BATTERIES; CONDUCTIVITY;
D O I
10.1039/d3ra05937e
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Post-lithium-ion batteries are designed to achieve high energy density and high safety by modifying their active material and cell configuration. In terms of the active material, lithium-sulfur batteries have the highest charge-storage capacity and high active-material utilization because of the use of a conversion-type sulfur cathode, which involves conversion between solid-state sulfur, liquid-state polysulfides, and solid-state sulfides. In terms of the configuration, solid-state batteries ensure high safety by using a solid-state electrolyte in between the two electrodes. Herein, we use a lithium lanthanum titanate (LLTO) solid-state electrolyte in the lithium-sulfur cell with a polysulfide catholyte electrode. The LLTO, which replaces the conventional liquid electrolyte, is a solid-state electrolyte that offers smooth lithium-ion diffusion and prevents the loss of polysulfides, while the highly active polysulfide electrode, which replaces the solid-state sulfur cathode, improves the reaction kinetics and the active-material utilization. The material and electrochemical analyses confirm the stabilized electrodes exhibit long-lasting lithium stripping/plating stability and limited polysulfide diffusion. Moreover, the morphologically and electrochemically smooth interface between the solid-state electrolyte and catholyte enables fast charge transfer in the cell, which demonstrates a high charge-storage capacity of 1429 mA h g-1, high rate performance, and high electrochemical efficiency. A lithium lanthanum titanate (LLTO) solid-state electrolyte is adopted in a lithium-sulfur cell to stabilize the passivated lithium anode and to demonstrate the optimized electrochemical interface between the LLTO and polysulfide cathode.
引用
收藏
页码:4025 / 4033
页数:9
相关论文
共 50 条
  • [1] Thin Solid Electrolyte Separators for Solid-State Lithium-Sulfur Batteries
    Kim, Soochan
    Chart, Yvonne A.
    Narayanan, Sudarshan
    Pasta, Mauro
    [J]. NANO LETTERS, 2022, 22 (24) : 10176 - 10183
  • [2] Diagnosing and Correcting the Failure of the Solid-State Polymer Electrolyte for Enhancing Solid-State Lithium-Sulfur Batteries
    Meng, Xiangyu
    Liu, Yuzhao
    Ma, Yanfu
    Boyjoo, Yash
    Liu, Jian
    Qiu, Jieshan
    Wang, Zhiyu
    [J]. ADVANCED MATERIALS, 2023, 35 (22)
  • [3] Towards safe lithium-sulfur batteries from liquid-state electrolyte to solid-state electrolyte
    Pang, Zhiyuan
    Zhang, Hongzhou
    Wang, Lu
    Song, Dawei
    Shi, Xixi
    Ma, Yue
    Kong, Linglong
    Zhang, Lianqi
    [J]. FRONTIERS OF MATERIALS SCIENCE, 2023, 17 (01)
  • [4] Towards safe lithium-sulfur batteries from liquid-state electrolyte to solid-state electrolyte
    Zhiyuan Pang
    Hongzhou Zhang
    Lu Wang
    Dawei Song
    Xixi Shi
    Yue Ma
    Linglong Kong
    Lianqi Zhang
    [J]. Frontiers of Materials Science, 2023, 17
  • [5] Solid-State Electrolytes for Lithium-Sulfur Batteries
    Zhang Huiming
    Guo Cheng
    Nuli Yanna
    Yang Jun
    Wang Jiulin
    [J]. Transactions of Nanjing University of Aeronautics and Astronautics, 2018, 35 (04) : 565 - 577
  • [6] Solid-state electrochemical lithium cells with oxide electrodes and composite solid electrolyte
    Mateishina, Yu. G.
    Uvarov, N. F.
    Ulikhin, A. S.
    [J]. RUSSIAN JOURNAL OF ELECTROCHEMISTRY, 2007, 43 (05) : 606 - 608
  • [7] Solid-state electrochemical lithium cells with oxide electrodes and composite solid electrolyte
    Yu. G. Mateishina
    N. F. Uvarov
    A. S. Ulikhin
    [J]. Russian Journal of Electrochemistry, 2007, 43 : 606 - 608
  • [8] The Discharge Mechanism for Solid-State Lithium-Sulfur Batteries
    Nagai Erika
    Timothy S. Arthur
    Patrick Bonnick
    Koji Suto
    Muldoon John
    [J]. MRS Advances, 2019, 4 : 2627 - 2634
  • [9] The Discharge Mechanism for Solid-State Lithium-Sulfur Batteries
    Nagai, Erika
    Arthur, Timothy S.
    Bonnick, Patrick
    Suto, Koji
    Muldoon, John
    [J]. MRS ADVANCES, 2019, 4 (49) : 2627 - 2634
  • [10] Progress and Perspective of Solid-State Lithium-Sulfur Batteries
    Lei, Danni
    Shi, Kai
    Ye, Heng
    Wan, Zipei
    Wang, Yanyan
    Shen, Lu
    Li, Baohua
    Yang, Quan-Hong
    Kang, Feiyu
    He, Yan-Bing
    [J]. ADVANCED FUNCTIONAL MATERIALS, 2018, 28 (38)