Revisitation of "implicit quiescent optical solitons with complex Ginzburg-Landau equation having nonlinear chromatic dispersion": generalized temporal evolution

被引:1
|
作者
Adem, Abdullahi Rashid [1 ]
Biswas, Anjan [2 ,3 ,4 ,5 ]
Yildirim, Yakup [6 ,7 ,8 ]
Alshomrani, Ali Saleh [3 ]
机构
[1] Univ South Africa, Dept Math Sci, ZA-0003 Unisa, South Africa
[2] Grambling State Univ, Dept Math & Phys, Grambling, LA 71245 USA
[3] King Abdulaziz Univ, Ctr Modern Math Sci & their Applicat CMMSA, Dept Math, Math Modeling & Appl Computat MMAC Res Grp, Jeddah 21589, Saudi Arabia
[4] Dunarea de Jos Univ Galati, Cross Border Fac Humanities Econ & Engn, Dept Appl Sci, 111 Domneasca St, Galati 800201, Romania
[5] Sefako Makgatho Hlth Sci Univ, Dept Math & Appl Math, ZA-0204 Medunsa, South Africa
[6] Biruni Univ, Dept Comp Engn, TR-34010 Istanbul, Turkiye
[7] Near East Univ, Math Res Ctr, CY-99138 Nicosia, Cyprus
[8] Univ Kyrenia, Fac Arts & Sci, CY-99320 Kyrenia, Cyprus
来源
关键词
Nonlinear chromatic dispersion; Stationary solitons; 060.2310; 060.4510; 060.5530; 190.3270; 190.4370; LAW;
D O I
10.1007/s12596-024-01759-4
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
This paper is a revisitation to the study on the retrieval of quiescent optical solitons to the complex Ginzburg-Landau equation that is considered with generalized temporal evolution and nonlinear chromatic dispersion. The results are recovered with the application of Lie symmetry. Apart from a couple of self-phase modulation structures where the results are in quadratures, the integrals are with a range of special functions. Two new forms of self-phase modulation structures are addressed in the paper.
引用
收藏
页数:10
相关论文
共 50 条
  • [41] Implicit Quiescent Optical Solitons for the Dispersive Concatenation Model with Nonlinear Chromatic Dispersion by Lie Symmetry
    Adem, Abdullahi Rashid
    Biswas, Anjan
    Yildirim, Yakup
    Asiri, Asim
    CONTEMPORARY MATHEMATICS, 2023, 4 (04): : 666 - 674
  • [42] Quiescent Optical Solitons for the Concatenation Model Having Nonlinear Chromatic Dispersion with Differential Group Delay
    Arnous, Ahmed H.
    Biswas, Anjan
    Yildirim, Yakup
    Asiri, Asim
    CONTEMPORARY MATHEMATICS, 2023, 4 (04): : 877 - 904
  • [43] Traveling hole solutions to the complex Ginzburg-Landau equation as perturbations of nonlinear Schrodinger dark solitons
    Lega, J
    Fauve, S
    PHYSICA D, 1997, 102 (3-4): : 234 - 252
  • [44] Role of the quintic nonlinear refractive term in the stability of dissipative solitons of the complex Ginzburg-Landau equation
    Soto-Crespo, Jose M.
    Akhmediev, N.
    JOURNAL OF THE OPTICAL SOCIETY OF AMERICA B-OPTICAL PHYSICS, 2021, 38 (12) : 3541 - 3548
  • [45] Conservation laws for pure-cubic optical solitons with complex Ginzburg-Landau equation having several refractive index structures
    Biswas, Anjan
    Kara, Abdul H.
    Sun, Yunzhou
    Zhou, Qin
    Yildirim, Yakup
    Alshehri, Hashim M.
    Belic, Milivoj R.
    RESULTS IN PHYSICS, 2021, 31
  • [46] Chirp-free bright optical solitons and conservation laws for complex Ginzburg-Landau equation with three nonlinear forms
    Biswas, Anjan
    OPTIK, 2018, 174 : 207 - 215
  • [47] Stability analysis, optical solitons and complexitons of the two-dimensional complex Ginzburg-Landau equation
    Mao, Jin-Jin
    Tian, Shou-Fu
    Zou, Li
    Zhang, Tian-Tian
    JOURNAL OF ELECTROMAGNETIC WAVES AND APPLICATIONS, 2019, 33 (09) : 1224 - 1238
  • [48] Chirped optical solitons for the complex Ginzburg-Landau equation with Hamiltonian perturbations and Kerr law nonlinearity
    Tang, Ming-Yue
    Meng, Tong-Yu
    ZEITSCHRIFT FUR NATURFORSCHUNG SECTION A-A JOURNAL OF PHYSICAL SCIENCES, 2024, 79 (07): : 659 - 672
  • [49] Propagation properties of bright solitons generated by the complex Ginzburg-Landau equation with high-order dispersion and nonlinear gradient terms
    Yan, Ziwen
    Yan, Yuanyuan
    Liu, Muwei
    Liu, Wenjun
    APPLIED MATHEMATICS LETTERS, 2024, 157
  • [50] Stationary optical solitons with nonlinear chromatic dispersion and generalized temporal evolution by extended trial function approach
    Sucu, Nuray
    Ekici, Mehmet
    Biswas, Anjan
    CHAOS SOLITONS & FRACTALS, 2021, 147