Revisitation of "implicit quiescent optical solitons with complex Ginzburg-Landau equation having nonlinear chromatic dispersion": generalized temporal evolution

被引:1
|
作者
Adem, Abdullahi Rashid [1 ]
Biswas, Anjan [2 ,3 ,4 ,5 ]
Yildirim, Yakup [6 ,7 ,8 ]
Alshomrani, Ali Saleh [3 ]
机构
[1] Univ South Africa, Dept Math Sci, ZA-0003 Unisa, South Africa
[2] Grambling State Univ, Dept Math & Phys, Grambling, LA 71245 USA
[3] King Abdulaziz Univ, Ctr Modern Math Sci & their Applicat CMMSA, Dept Math, Math Modeling & Appl Computat MMAC Res Grp, Jeddah 21589, Saudi Arabia
[4] Dunarea de Jos Univ Galati, Cross Border Fac Humanities Econ & Engn, Dept Appl Sci, 111 Domneasca St, Galati 800201, Romania
[5] Sefako Makgatho Hlth Sci Univ, Dept Math & Appl Math, ZA-0204 Medunsa, South Africa
[6] Biruni Univ, Dept Comp Engn, TR-34010 Istanbul, Turkiye
[7] Near East Univ, Math Res Ctr, CY-99138 Nicosia, Cyprus
[8] Univ Kyrenia, Fac Arts & Sci, CY-99320 Kyrenia, Cyprus
来源
关键词
Nonlinear chromatic dispersion; Stationary solitons; 060.2310; 060.4510; 060.5530; 190.3270; 190.4370; LAW;
D O I
10.1007/s12596-024-01759-4
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
This paper is a revisitation to the study on the retrieval of quiescent optical solitons to the complex Ginzburg-Landau equation that is considered with generalized temporal evolution and nonlinear chromatic dispersion. The results are recovered with the application of Lie symmetry. Apart from a couple of self-phase modulation structures where the results are in quadratures, the integrals are with a range of special functions. Two new forms of self-phase modulation structures are addressed in the paper.
引用
收藏
页数:10
相关论文
共 50 条
  • [31] FROM DARK SOLITONS IN THE DEFOCUSING NONLINEAR SCHRODINGER TO HOLES IN THE COMPLEX GINZBURG-LANDAU EQUATION
    STILLER, O
    POPP, S
    KRAMER, L
    PHYSICA D, 1995, 84 (3-4): : 424 - 436
  • [32] Optical Solitons with the Complex Ginzburg-Landau Equation with Kudryashov's Law of Refractive Index
    Arnous, Ahmed H.
    Moraru, Luminita
    MATHEMATICS, 2022, 10 (19)
  • [33] Bifurcations, stationary optical solitons and exact solutions for complex Ginzburg–Landau equation with nonlinear chromatic dispersion in non-Kerr law media
    Tianyong Han
    Zhao Li
    Chenyu Li
    Lingzhi Zhao
    Journal of Optics, 2023, 52 : 831 - 844
  • [34] Dark-singular combo optical solitons with fractional complex Ginzburg-Landau equation
    Abdou, M. A.
    Soliman, A. A.
    Biswas, Anjan
    Ekici, Mehmet
    Zhou, Qin
    Moshokoa, Seithuti P.
    OPTIK, 2018, 171 : 463 - 467
  • [35] Optical solitons with differential group delay for complex Ginzburg-Landau equation having Kerr and parabolic laws of refractive index
    Yildirim, Yakup
    Biswas, Anjan
    Khan, Salam
    Alshomrani, Ali Saleh
    Belic, Milivoj R.
    OPTIK, 2020, 202
  • [36] Cubic-quartic optical solitons of the complex Ginzburg-Landau equation: A novel approach
    Arnous, Ahmed H.
    Nofal, Taher A.
    Biswas, Anjan
    Yildirim, Yakup
    Asiri, Asim
    NONLINEAR DYNAMICS, 2023, 111 (21) : 20201 - 20216
  • [37] Cubic-quartic optical solitons of the complex Ginzburg-Landau equation: A novel approach
    Ahmed H. Arnous
    Taher A. Nofal
    Anjan Biswas
    Yakup Yıldırım
    Asim Asiri
    Nonlinear Dynamics, 2023, 111 : 20201 - 20216
  • [38] Sensitive behavior and optical solitons of complex fractional Ginzburg-Landau equation: A comparative paradigm
    Arshed, Saima
    Raza, Nauman
    Rahman, Riaz Ur
    Butt, Asma Rashid
    Huang, Wen-Hua
    RESULTS IN PHYSICS, 2021, 28
  • [39] Highly dispersive optical solitons in birefringent fibers for perturbed complex Ginzburg-Landau equation having polynomial law of nonlinearity
    Zayed, Elsayed M. E.
    Alngar, Mohamed E. M.
    Shohib, Reham M. A.
    Nofal, Taher A.
    Gepreel, Khaled A.
    OPTIK, 2022, 261
  • [40] Quiescent Optical Solitons with Kudryashov's Generalized Quintuple-Power and Nonlocal Nonlinearity Having Nonlinear Chromatic Dispersion
    Arnous, Ahmed H.
    Nofal, Taher A.
    Biswas, Anjan
    Khan, Salam
    Moraru, Luminita
    UNIVERSE, 2022, 8 (10)