Bayesian prediction and estimation based on a shrinkage prior for a Poisson regression model

被引:0
|
作者
Komaki, Fumiyasu [1 ,2 ,3 ]
机构
[1] Univ Tokyo, Dept Math Informat, Tokyo, Japan
[2] RIKEN Ctr Brain Sci, Wako, Japan
[3] Univ Tokyo, Int Res Ctr Neurointelligence, Tokyo, Japan
基金
日本学术振兴会;
关键词
Bayes extended estimator; Infinitesimal prediction; Information geometry; Jeffreys prior; Kullback-Leibler divergence;
D O I
10.1007/s42081-023-00238-7
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We introduce a Poisson regression model with a natural structure, as viewed from the perspective of information geometry. A shrinkage prior distribution can be utilized similarly to the multi-dimensional Poisson distribution. In the Poisson regression model, we demonstrate that the Bayes extended estimator and Bayesian predictive density based on the shrinkage prior dominate those based on the Jeffreys prior under the Kullback-Leibler loss. By considering a multi-dimensional Poisson process, we show that the loss of the Bayesian predictive density is expressed as the integral of the loss of the Bayes extended estimators. Additionally, we discuss on the numerical evaluation of the Bayes extended estimates
引用
收藏
页码:411 / 429
页数:19
相关论文
共 50 条
  • [31] Optimal convergence rates of Bayesian wavelet estimation with a novel empirical prior in nonparametric regression model
    Yu, Yuncai
    Liu, Ling
    Wu, Peng
    Liu, Xinsheng
    [J]. STATISTICS, 2022, 56 (03) : 565 - 577
  • [32] Shrinkage estimation in lognormal regression model for censored data
    Hossain, Shakhawat
    Howlader, Hatem A.
    [J]. JOURNAL OF APPLIED STATISTICS, 2017, 44 (01) : 162 - 180
  • [33] Bayesian wavelet shrinkage with logistic prior
    Sousa, Alex Rodrigo
    [J]. COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2022, 51 (08) : 4700 - 4714
  • [34] A multivariate Poisson-lognormal regression model for prediction of crash counts by severity, using Bayesian methods
    Ma, Jianming
    Kockelman, Kara M.
    Damien, Paul
    [J]. ACCIDENT ANALYSIS AND PREVENTION, 2008, 40 (03): : 964 - 975
  • [35] PREDICTION-BASED MODEL SELECTION FOR BAYESIAN MULTIPLE REGRESSION MODELS
    Pintar, Adam L.
    Anderson-Cook, Christine M.
    Wu, Huaiqing
    [J]. ADVANCES AND APPLICATIONS IN STATISTICS, 2013, 32 (02) : 83 - 117
  • [36] Bayesian estimation, prediction and characterization for the Gumbel model based on records
    Mousa, MAMA
    Jaheen, ZF
    Ahmad, AA
    [J]. STATISTICS, 2002, 36 (01) : 65 - 74
  • [37] Bayesian Sparse Spiked Covariance Model with a Continuous Matrix Shrinkage Prior*
    Xie, Fangzheng
    Cape, Joshua
    Priebe, Carey E.
    Xu, Yanxun
    [J]. BAYESIAN ANALYSIS, 2022, 17 (04): : 1193 - 1217
  • [38] Bayesian Interval Estimation of Tobit Regression Model
    Lee, Seung-Chun
    Choi, Byung Su
    [J]. KOREAN JOURNAL OF APPLIED STATISTICS, 2013, 26 (05) : 737 - 746
  • [39] Shrinkage priors for Bayesian penalized regression
    van Erp, Sara
    Oberski, Daniel L.
    Mulder, Joris
    [J]. JOURNAL OF MATHEMATICAL PSYCHOLOGY, 2019, 89 : 31 - 50
  • [40] Pre-test estimation in Poisson regression model
    Sapra, SK
    [J]. APPLIED ECONOMICS LETTERS, 2003, 10 (09) : 541 - 543