Bayesian Interval Estimation of Tobit Regression Model

被引:2
|
作者
Lee, Seung-Chun [1 ]
Choi, Byung Su [2 ]
机构
[1] Hanshin Univ, Dept Appl Stat, 441 Yangsan Dong, Osan 447791, Kyunggi Do, South Korea
[2] Hansung Univ, Dept Multimedia Engn, Seoul, South Korea
关键词
Gibbs sampling; noninformative prior; censored regression model; coverage probability;
D O I
10.5351/KJAS.2013.26.5.737
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
The Bayesian method can be applied successfully to the estimation of the censored regression model introduced by Tobin (1958). The Bayes estimates show improvements over the maximum likelihood estimate; however, the performance of the Bayesian interval estimation is questionable. In Bayesian paradigm, the prior distribution usually reflects personal beliefs about the parameters. Such subjective priors will typically yield interval estimators with poor frequentist properties; however, an objective noninformative often yields a Bayesian procedure with good frequentist properties. We examine the performance of frequentist properties of noninformative priors for the Tobit regression model.
引用
收藏
页码:737 / 746
页数:10
相关论文
共 50 条
  • [1] Bayesian analysis of a Tobit quantile regression model
    Yu, Keming
    Stander, Julian
    [J]. JOURNAL OF ECONOMETRICS, 2007, 137 (01) : 260 - 276
  • [2] Tobit model estimation and sliced inverse regression
    Li, Lexin
    Simonoff, Jeffrey S.
    Tsai, Chih-Ling
    [J]. STATISTICAL MODELLING, 2007, 7 (02) : 107 - 123
  • [3] Bayesian estimation of the linear regression model with an uncertain interval constraint on coefficients
    Alan T. K. Wan
    William E. Griffiths
    [J]. Statistical Papers, 1998, 39 : 109 - 118
  • [4] Bayesian estimation of the linear regression model with an uncertain interval constraint on coefficients
    Wan, ATK
    Griffiths, WE
    [J]. STATISTICAL PAPERS, 1998, 39 (01) : 109 - 118
  • [5] Bayesian Endogenous Tobit Quantile Regression
    Kobayashi, Genya
    [J]. BAYESIAN ANALYSIS, 2017, 12 (01): : 161 - 191
  • [6] Bayesian composite Tobit quantile regression
    Alhusseini, Fadel Hamid Hadi
    Georgescu, Vasile
    [J]. JOURNAL OF APPLIED STATISTICS, 2018, 45 (04) : 727 - 739
  • [7] Variational inference on a Bayesian adaptive lasso Tobit quantile regression model
    Wang, Zhiqiang
    Wu, Ying
    Cheng, WeiLi
    [J]. STAT, 2023, 12 (01):
  • [8] A Comparison of Bayesian and Maximum Likelihood Estimations in a SUR Tobit Regression Model
    Lee, Seung-Chun
    Choi, Byongsu
    [J]. KOREAN JOURNAL OF APPLIED STATISTICS, 2014, 27 (06) : 991 - 1002
  • [9] Bayesian Elastic Net Tobit Quantile Regression
    Alhamzawi, Rahim
    [J]. COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2016, 45 (07) : 2409 - 2427
  • [10] Bayesian Tobit quantile regression model for medical expenditure panel survey data
    Yue, Yu Ryan
    Hong, Hyokyoung Grace
    [J]. STATISTICAL MODELLING, 2012, 12 (04) : 323 - 346