Engineering and Probing Non-Abelian Chiral Spin Liquids Using Periodically Driven Ultracold Atoms

被引:18
|
作者
Sun, Bo -Ye [1 ,2 ]
Goldman, Nathan [1 ]
Aidelsburger, Monika [3 ,4 ]
Bukov, Marin [5 ,6 ]
机构
[1] Univ Libre Bruxelles, CENOLI, Campus Plaine,CP 231, B-1050 Brussels, Belgium
[2] YanTai Univ, Yantai 264005, Shandong, Peoples R China
[3] Ludwig Maximilians Univ Munchen, Fac Phys, Schellingstr 4, D-80799 Munich, Germany
[4] Munich Ctr Quantum Sci & Technol, Schellingstr 4, D-80799 Munich, Germany
[5] Max Planck Inst Phys Komplexer Syst, Nothnitzer Str 38, D-01187 Dresden, Germany
[6] St Kliment Ohridski Univ Sofia, Fac Phys, 5 James Bourchier Blvd, Sofia 1164, Bulgaria
来源
PRX QUANTUM | 2023年 / 4卷 / 02期
基金
中国国家自然科学基金;
关键词
QUANTUM COMPUTATION; GAUGE-INVARIANCE; REALIZATION; MODEL; STATES; FERMIONS; MATTER; ANYONS; PARITY; PHASE;
D O I
10.1103/PRXQuantum.4.020329
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We propose a scheme to implement Kitaev's honeycomb model with cold atoms, based on a periodic (Floquet) drive, in view of realizing and probing non-Abelian chiral spin liquids using quantum simulators. We derive the effective Hamiltonian to leading order in the inverse-frequency expansion, and show that the drive opens up a topological gap in the spectrum without mixing the effective Majorana and vortex degrees of freedom. We address the challenge of probing the physics of Majorana fermions, while having access only to the original composite spin degrees of freedom. Specifically, we propose to detect the properties of the chiral spin liquid phase using gap spectroscopy and edge quenches in the presence of the Floquet drive. The resulting chiral edge signal, which relates to the thermal Hall effect associated with neutral Majorana currents, is found to be robust for realistically prepared states. By combining strong interactions with Floquet engineering, our work paves the way for future studies of non-Abelian excitations and quantized thermal transport using quantum simulators.
引用
收藏
页数:24
相关论文
共 49 条
  • [1] Non-Abelian Anyons in Periodically Driven Abelian Spin Liquids
    Petiziol, Francesco
    [J]. PHYSICAL REVIEW LETTERS, 2024, 133 (03)
  • [2] Thermodynamics of Chiral Spin Liquids with Abelian and Non-Abelian Anyons
    Nasu, Joji
    Motome, Yukitoshi
    [J]. PHYSICAL REVIEW LETTERS, 2015, 115 (08)
  • [3] Lattice spin models for non-Abelian chiral spin liquids
    Lecheminant, P.
    Tsvelik, A. M.
    [J]. PHYSICAL REVIEW B, 2017, 95 (14)
  • [4] Model of chiral spin liquids with Abelian and non-Abelian topological phases
    Chen, Jyong-Hao
    Mudry, Christopher
    Chamon, Claudio
    Tsvelik, A. M.
    [J]. PHYSICAL REVIEW B, 2017, 96 (22)
  • [5] Abelian and non-Abelian chiral spin liquids in a compact tensor network representation
    Lee, Hyun-Yong
    Kaneko, Ryui
    Okubo, Tsuyoshi
    Kawashima, Naoki
    [J]. PHYSICAL REVIEW B, 2020, 101 (03)
  • [6] Exploring Non-Abelian Geometric Phases in Spin-1 Ultracold Atoms
    Bharath, H. M.
    Boguslawski, Matthew
    Barrios, Maryrose
    Xin, Lin
    Chapman, Michael S.
    [J]. PHYSICAL REVIEW LETTERS, 2019, 123 (17)
  • [7] Non-Abelian geometric phases in periodically driven systems
    Novicenko, Viktor
    Juzeliunas, Gediminas
    [J]. PHYSICAL REVIEW A, 2019, 100 (01)
  • [8] Non-Abelian geometric potentials and spin-orbit coupling for periodically driven systems
    Rackauskas, Povilas
    Novicenko, Viktor
    Pu, Han
    Juzeliunas, Gediminas
    [J]. PHYSICAL REVIEW A, 2019, 100 (06)
  • [9] Probing Non-Abelian Statistics of Majorana Fermions in Ultracold Atomic Superfluid
    Zhu, Shi-Liang
    Shao, L. -B.
    Wang, Z. D.
    Duan, L. -M.
    [J]. PHYSICAL REVIEW LETTERS, 2011, 106 (10)
  • [10] Vortex lattices for ultracold bosonic atoms in a non-Abelian gauge potential
    Komineas, Stavros
    Cooper, Nigel R.
    [J]. PHYSICAL REVIEW A, 2012, 85 (05):