Engineering and Probing Non-Abelian Chiral Spin Liquids Using Periodically Driven Ultracold Atoms

被引:18
|
作者
Sun, Bo -Ye [1 ,2 ]
Goldman, Nathan [1 ]
Aidelsburger, Monika [3 ,4 ]
Bukov, Marin [5 ,6 ]
机构
[1] Univ Libre Bruxelles, CENOLI, Campus Plaine,CP 231, B-1050 Brussels, Belgium
[2] YanTai Univ, Yantai 264005, Shandong, Peoples R China
[3] Ludwig Maximilians Univ Munchen, Fac Phys, Schellingstr 4, D-80799 Munich, Germany
[4] Munich Ctr Quantum Sci & Technol, Schellingstr 4, D-80799 Munich, Germany
[5] Max Planck Inst Phys Komplexer Syst, Nothnitzer Str 38, D-01187 Dresden, Germany
[6] St Kliment Ohridski Univ Sofia, Fac Phys, 5 James Bourchier Blvd, Sofia 1164, Bulgaria
来源
PRX QUANTUM | 2023年 / 4卷 / 02期
基金
中国国家自然科学基金;
关键词
QUANTUM COMPUTATION; GAUGE-INVARIANCE; REALIZATION; MODEL; STATES; FERMIONS; MATTER; ANYONS; PARITY; PHASE;
D O I
10.1103/PRXQuantum.4.020329
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We propose a scheme to implement Kitaev's honeycomb model with cold atoms, based on a periodic (Floquet) drive, in view of realizing and probing non-Abelian chiral spin liquids using quantum simulators. We derive the effective Hamiltonian to leading order in the inverse-frequency expansion, and show that the drive opens up a topological gap in the spectrum without mixing the effective Majorana and vortex degrees of freedom. We address the challenge of probing the physics of Majorana fermions, while having access only to the original composite spin degrees of freedom. Specifically, we propose to detect the properties of the chiral spin liquid phase using gap spectroscopy and edge quenches in the presence of the Floquet drive. The resulting chiral edge signal, which relates to the thermal Hall effect associated with neutral Majorana currents, is found to be robust for realistically prepared states. By combining strong interactions with Floquet engineering, our work paves the way for future studies of non-Abelian excitations and quantized thermal transport using quantum simulators.
引用
收藏
页数:24
相关论文
共 49 条
  • [41] Probing non-Abelian statistics with Majorana fermion interferometry in spin-orbit-coupled semiconductors
    Sau, Jay D.
    Tewari, Sumanta
    Das Sarma, S.
    [J]. PHYSICAL REVIEW B, 2011, 84 (08)
  • [42] Probing a half-odd topological number sequence with cold atoms in a non-Abelian optical lattice
    Mei, Feng
    Zhu, Shi-Liang
    Feng, Xun-Li
    Zhang, Zhi-Ming
    Oh, C. H.
    [J]. PHYSICAL REVIEW A, 2011, 84 (02):
  • [43] Non-Abelian chiral spin liquid on a spin-1 kagome lattice: Truncation of an exact Hamiltonian and numerical optimization
    Jaworowski, Blazej
    Nielsen, Anne E. B.
    [J]. PHYSICAL REVIEW B, 2022, 106 (11)
  • [44] Ultracold Fermionic Atoms in Square and Triangular Optical Lattices with Non-Abelian Gauge Fields and Out-of-Plane Zeeman Field
    Koinov, Zlatko
    [J]. JOURNAL OF LOW TEMPERATURE PHYSICS, 2019, 194 (3-4) : 246 - 261
  • [45] Ultracold Fermionic Atoms in Square and Triangular Optical Lattices with Non-Abelian Gauge Fields and Out-of-Plane Zeeman Field
    Zlatko Koinov
    [J]. Journal of Low Temperature Physics, 2019, 194 : 246 - 261
  • [46] Global quantum phase diagram and non-Abelian chiral spin liquid in a spin-3/2 square-lattice antiferromagnet
    Luo, Wei-Wei
    Huang, Yixuan
    Sheng, D. N.
    Zhu, W.
    [J]. PHYSICAL REVIEW B, 2023, 108 (03)
  • [47] Quantum non-Abelian hydrodynamics: Anyonic or spin-orbital entangled liquids, nonunitarity of scattering matrix and charge fractionalization
    Pareek, Tribhuvan Prasad
    [J]. INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 2015, 29 (02):
  • [48] Laser-driven population transfer in four-level atoms: Consequences of non-Abelian geometrical adiabatic phase factors
    Unanyan, RG
    Shore, BW
    Bergmann, K
    [J]. PHYSICAL REVIEW A, 1999, 59 (04): : 2910 - 2919
  • [49] Single electron control in n-type semiconductor quantum dots using non-Abelian holonomies generated by spin orbit coupling
    Yang, SRE
    Hwang, NY
    [J]. PHYSICAL REVIEW B, 2006, 73 (12)