On the instrumental variable estimation with many weak and invalid instruments

被引:3
|
作者
Lin, Yiqi [1 ]
Windmeijer, Frank [2 ,3 ]
Song, Xinyuan [1 ]
Fan, Qingliang [4 ,5 ]
机构
[1] Chinese Univ Hong Kong, Dept Stat, Hong Kong, Peoples R China
[2] Univ Oxford, Dept Stat, Oxford OX1 1NF, England
[3] Univ Oxford, Nuffield Coll, Oxford, England
[4] Chinese Univ Hong Kong, Dept Econ, Hong Kong, Peoples R China
[5] Chinese Univ Hong Kong, Dept Econ, Shatin, 903 Esther Lee Bldg, Hong Kong, Peoples R China
关键词
invalid instruments; model identification; non-convex penalty; treatment effect; weak instruments; MENDELIAN RANDOMIZATION; LASSO; REGRESSION; SELECTION;
D O I
10.1093/jrsssb/qkae025
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We discuss the fundamental issue of identification in linear instrumental variable (IV) models with unknown IV validity. With the assumption of the 'sparsest rule', which is equivalent to the plurality rule but becomes operational in computation algorithms, we investigate and prove the advantages of non-convex penalized approaches over other IV estimators based on two-step selections, in terms of selection consistency and accommodation for individually weak IVs. Furthermore, we propose a surrogate sparsest penalty that aligns with the identification condition and provides oracle sparse structure simultaneously. Desirable theoretical properties are derived for the proposed estimator with weaker IV strength conditions compared to the previous literature. Finite sample properties are demonstrated using simulations and the selection and estimation method is applied to an empirical study concerning the effect of body mass index on diastolic blood pressure.
引用
收藏
页码:1068 / 1088
页数:21
相关论文
共 50 条
  • [31] Jackknife estimation of a cluster-sample IV regression model with many weak instruments✩
    Chao, John C.
    Swanson, Norman R.
    Woutersen, Tiemen
    JOURNAL OF ECONOMETRICS, 2023, 235 (02) : 1747 - 1769
  • [32] Rank tests for instrumental variables regression with weak instruments
    Andrews, Donald W. K.
    Soares, Gustavo
    ECONOMETRIC THEORY, 2007, 23 (06) : 1033 - 1082
  • [33] Weak Instruments in Instrumental Variables Regression: Theory and Practice
    Andrews, Isaiah
    Stock, James H.
    Sun, Liyang
    ANNUAL REVIEW OF ECONOMICS, VOL 11, 2019, 2019, 11 : 727 - 753
  • [34] Binary Response Model With Many Weak Instruments
    Seong, Dakyung
    JOURNAL OF APPLIED ECONOMETRICS, 2025, 40 (02) : 214 - 230
  • [35] The many weak instruments problem and Mendelian randomization
    Davies, Neil M.
    Scholder, Stephanie von Hinke Kessler
    Farbmacher, Helmut
    Burgess, Stephen
    Windmeijer, Frank
    Smith, George Davey
    STATISTICS IN MEDICINE, 2015, 34 (03) : 454 - 468
  • [36] Instrumental Variables Estimation without Outside Instruments
    Kien C. Tran
    Mike G. Tsionas
    Journal of Quantitative Economics, 2022, 20 : 489 - 506
  • [37] Instrumental Variables Estimation without Outside Instruments
    Tran, Kien C.
    Tsionas, Mike G.
    JOURNAL OF QUANTITATIVE ECONOMICS, 2022, 20 (03) : 489 - 506
  • [38] Instrumental variables estimation with partially missing instruments
    Mogstad, M.
    Wiswall, M.
    ECONOMICS LETTERS, 2012, 114 (02) : 186 - 189
  • [39] Inference on structural parameters in instrumental variables regression with weak instruments
    Wang, JH
    Zivot, E
    ECONOMETRICA, 1998, 66 (06) : 1389 - 1404
  • [40] Nonparametric instrumental variable derivative estimation
    Florens, J. P.
    Racine, J. S.
    Centorrino, S.
    JOURNAL OF NONPARAMETRIC STATISTICS, 2018, 30 (02) : 368 - 391