This paper considers an alternative estimation approach of regression models with endogenous regressors when external instruments are not available. An artificial neural network is used to model the correlation between error and regressors coupled with Bayesian exponentially tilted empirical likelihood to obtain a consistent estimation of the model’s parameters. Monte Carlo simulations indicate that the new approach performs well in finite samples. An empirical application is presented to illustrate the usefulness of our proposed approach.
机构:
Univ Penn, Wharton Sch, Dept Stat, Jon M Huntsman Hall,3730 Walnut St, Philadelphia, PA 19104 USAUniv Penn, Wharton Sch, Dept Stat, Jon M Huntsman Hall,3730 Walnut St, Philadelphia, PA 19104 USA
Kang, Hyunseung
Zhang, Anru
论文数: 0引用数: 0
h-index: 0
机构:
Univ Penn, Wharton Sch, Dept Stat, Jon M Huntsman Hall,3730 Walnut St, Philadelphia, PA 19104 USAUniv Penn, Wharton Sch, Dept Stat, Jon M Huntsman Hall,3730 Walnut St, Philadelphia, PA 19104 USA
Zhang, Anru
Cai, T. Tony
论文数: 0引用数: 0
h-index: 0
机构:
Univ Penn, Wharton Sch, Dept Stat, Stat, Jon M Huntsman Hall,3730 Walnut St, Philadelphia, PA 19104 USAUniv Penn, Wharton Sch, Dept Stat, Jon M Huntsman Hall,3730 Walnut St, Philadelphia, PA 19104 USA
Cai, T. Tony
Small, Dylan S.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Penn, Wharton Sch, Dept Stat, Jon M Huntsman Hall,3730 Walnut St, Philadelphia, PA 19104 USAUniv Penn, Wharton Sch, Dept Stat, Jon M Huntsman Hall,3730 Walnut St, Philadelphia, PA 19104 USA