Research progress and application of deep learning in remaining useful life, state of health and battery thermal management of lithium batteries

被引:26
|
作者
He, Wenbin [1 ]
Li, Zongze [1 ]
Liu, Ting [1 ]
Liu, Zhaohui [2 ]
Guo, Xudong [1 ]
Du, Jinguang [1 ]
Li, Xiaoke [1 ]
Sun, Peiyan [3 ]
Ming, Wuyi [1 ,3 ]
机构
[1] Zhengzhou Univ Light Ind, Henan Key Lab Intelligent Mfg Mech Equipment, Zhengzhou 450002, Peoples R China
[2] Zhengzhou Yutong Bus Co Ltd, Zhengzhou 450016, Peoples R China
[3] Guangdong HUST Ind Technol Res Inst, Guangdong Prov Key Lab Digital Mfg Equipment, Dongguan 523808, Peoples R China
关键词
Lithium battery; Deep learning; Remaining useful life; State of health; Battery thermal management; OF-CHARGE ESTIMATION; ION BATTERIES; NEURAL-NETWORK; ELECTRIC VEHICLES; INDICATOR EXTRACTION; THE-ART; PREDICTION; SYSTEM; HYBRID; MODEL;
D O I
10.1016/j.est.2023.107868
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Lithium batteries are considered to be one of the most promising green energy sources in the future. However, the problems of prognostic and health management are the main factors restricting the application and development of lithium batteries. Therefore, an efficient and intelligent battery management system (BMS) is very important. In recent years, with the continuous development of deep learning (DL), it has shown a good research prospect in the BMS. In this paper, the application of DL in the prediction the of remaining useful life (RUL), state of health (SOH) and battery thermal management (BTM) of lithium batteries of different methods are systematically reviewed. This review evaluates different deep learning approaches to battery estimation and prediction in terms of predictive performance, advantages, and disadvantages. In addition, the review discusses the characteristics, achievements, limitations, and directions for improvement of different algorithms in the above applications for factors affecting charge and discharge cycles, complex environments, dynamic conditions, and different battery types. Key issues and challenges in terms of computational complexity and various internal and external factors are identified. Finally, the future opportunities and directions are discussed to design a more efficient and intelligent algorithm model, which can adapt to more advanced BMS.
引用
收藏
页数:36
相关论文
共 50 条
  • [31] Particle Learning Framework for Estimating the Remaining Useful Life of Lithium-Ion Batteries
    Liu, Zhenbao
    Sun, Gaoyuan
    Bu, Shuhui
    Han, Junwei
    Tang, Xiaojun
    Pecht, Michael
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2017, 66 (02) : 280 - 293
  • [32] Remaining Useful Life Prediction of Lithium-Ion Battery via a Sequence Decomposition and Deep Learning Integrated Approach
    Chen, Zhang
    Chen, Liqun
    Shen, Wenjing
    Xu, Kangkang
    IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2022, 71 (02) : 1466 - 1479
  • [33] Lithium-Ion Battery Remaining Useful Life Prognostics Using Data-Driven Deep Learning Algorithm
    Li, Lyu
    Song, Yuchen
    Peng, Yu
    Liu, Datong
    2018 PROGNOSTICS AND SYSTEM HEALTH MANAGEMENT CONFERENCE (PHM-CHONGQING 2018), 2018, : 1094 - 1100
  • [34] Health Monitoring and Remaining Useful Life Estimation of Lithium-Ion Aeronautical Batteries
    Moreira Penna, Jose Affonso
    Nascimento, Cairo Lucio, Jr.
    Rodrigues, Leonardo Ramos
    2012 IEEE AEROSPACE CONFERENCE, 2012,
  • [35] Towards the swift prediction of the remaining useful life of lithium-ion batteries with end-to-end deep learning
    Hong, Joonki
    Lee, Dongheon
    Jeong, Eui-Rim
    Yi, Yung
    APPLIED ENERGY, 2020, 278
  • [36] A hybrid deep learning approach for remaining useful life prediction of lithium-ion batteries based on discharging fragments
    Liu Y.
    Hou B.
    Ahmed M.
    Mao Z.
    Feng J.
    Chen Z.
    Applied Energy, 2024, 358
  • [37] A Joint State of Health and Remaining Useful Life Estimation Approach for Lithium-ion Batteries Based on Health Factor Parameter
    Wang P.
    Fan L.
    Cheng Z.
    Zhongguo Dianji Gongcheng Xuebao/Proceedings of the Chinese Society of Electrical Engineering, 2022, 42 (04): : 1523 - 1533
  • [38] A Hybrid Ensemble Deep Learning Approach for Early Prediction of Battery Remaining Useful Life
    Qing Xu
    Min Wu
    Edwin Khoo
    Zhenghua Chen
    Xiaoli Li
    IEEE/CAA Journal of Automatica Sinica, 2023, 10 (01) : 177 - 187
  • [39] A Hybrid Ensemble Deep Learning Approach for Early Prediction of Battery Remaining Useful Life
    Xu, Qing
    Wu, Min
    Khoo, Edwin
    Chen, Zhenghua
    Li, Xiaoli
    IEEE-CAA JOURNAL OF AUTOMATICA SINICA, 2023, 10 (01) : 177 - 187
  • [40] A review of lithium-ion battery state of health and remaining useful life estimation methods based on bibliometric analysis
    Xu Lei
    Fangjian Xie
    Jialong Wang
    Chunling Zhang
    Journal of Traffic and Transportation Engineering(English Edition), 2024, 11 (06) : 1420 - 1446