Research progress and application of deep learning in remaining useful life, state of health and battery thermal management of lithium batteries

被引:26
|
作者
He, Wenbin [1 ]
Li, Zongze [1 ]
Liu, Ting [1 ]
Liu, Zhaohui [2 ]
Guo, Xudong [1 ]
Du, Jinguang [1 ]
Li, Xiaoke [1 ]
Sun, Peiyan [3 ]
Ming, Wuyi [1 ,3 ]
机构
[1] Zhengzhou Univ Light Ind, Henan Key Lab Intelligent Mfg Mech Equipment, Zhengzhou 450002, Peoples R China
[2] Zhengzhou Yutong Bus Co Ltd, Zhengzhou 450016, Peoples R China
[3] Guangdong HUST Ind Technol Res Inst, Guangdong Prov Key Lab Digital Mfg Equipment, Dongguan 523808, Peoples R China
关键词
Lithium battery; Deep learning; Remaining useful life; State of health; Battery thermal management; OF-CHARGE ESTIMATION; ION BATTERIES; NEURAL-NETWORK; ELECTRIC VEHICLES; INDICATOR EXTRACTION; THE-ART; PREDICTION; SYSTEM; HYBRID; MODEL;
D O I
10.1016/j.est.2023.107868
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Lithium batteries are considered to be one of the most promising green energy sources in the future. However, the problems of prognostic and health management are the main factors restricting the application and development of lithium batteries. Therefore, an efficient and intelligent battery management system (BMS) is very important. In recent years, with the continuous development of deep learning (DL), it has shown a good research prospect in the BMS. In this paper, the application of DL in the prediction the of remaining useful life (RUL), state of health (SOH) and battery thermal management (BTM) of lithium batteries of different methods are systematically reviewed. This review evaluates different deep learning approaches to battery estimation and prediction in terms of predictive performance, advantages, and disadvantages. In addition, the review discusses the characteristics, achievements, limitations, and directions for improvement of different algorithms in the above applications for factors affecting charge and discharge cycles, complex environments, dynamic conditions, and different battery types. Key issues and challenges in terms of computational complexity and various internal and external factors are identified. Finally, the future opportunities and directions are discussed to design a more efficient and intelligent algorithm model, which can adapt to more advanced BMS.
引用
收藏
页数:36
相关论文
共 50 条
  • [21] A critical review of improved deep learning methods for the remaining useful life prediction of lithium-ion batteries
    Wang, Shunli
    Jin, Siyu
    Bai, Dekui
    Fan, Yongcun
    Shi, Haotian
    Fernandez, Carlos
    ENERGY REPORTS, 2021, 7 : 5562 - 5574
  • [22] Remaining useful life prediction of lithium-ion batteries based on peak interval features and deep learning
    Liu, Yafei
    Sun, Guoqing
    Liu, Xuewen
    JOURNAL OF ENERGY STORAGE, 2023, 73
  • [23] Predicting the Future Capacity and Remaining Useful Life of Lithium-Ion Batteries Based on Deep Transfer Learning
    Sun, Chenyu
    Lu, Taolin
    Li, Qingbo
    Liu, Yili
    Yang, Wen
    Xie, Jingying
    Batteries, 2024, 10 (09)
  • [24] State of Health Estimation and Remaining Useful Life Prediction for Lithium-Ion Batteries Based on Partial Differential Thermal Voltammetry Curve
    Wang, Guangfeng
    Cui, Zhongrui
    Yuan, Haitao
    Lu, Dong
    Li, Tao
    Li, Changlong
    Cui, Naxin
    ENERGY TECHNOLOGY, 2024,
  • [25] Machine Learning Approaches in Battery Management Systems: State of the Art Remaining useful life and fault detection
    Ardeshiri, Reza Rouhi
    Balagopal, Bharat
    Alsabbagh, Amro
    Ma, Chengbin
    Chow, Mo-Yuen
    2020 2ND IEEE INTERNATIONAL CONFERENCE ON INDUSTRIAL ELECTRONICS FOR SUSTAINABLE ENERGY SYSTEMS (IESES), 2020, : 61 - 66
  • [26] State of health estimation and remaining useful life prediction for lithium-ion batteries using FBELNN and RCMNN
    Lin, Qiongbin
    Xu, Zhifan
    Lin, Chih-Min
    JOURNAL OF INTELLIGENT & FUZZY SYSTEMS, 2021, 40 (06) : 10919 - 10933
  • [27] Remaining Useful Life Estimation of Lithium-Ion Batteries based on Thermal Dynamics
    Zhang, Dong
    Dey, Satadru
    Perez, Hector E.
    Moura, Scott J.
    2017 AMERICAN CONTROL CONFERENCE (ACC), 2017, : 4042 - 4047
  • [28] State of health and remaining useful life prediction of lithium-ion batteries with conditional graph convolutional network
    Wei, Yupeng
    Wu, Dazhong
    EXPERT SYSTEMS WITH APPLICATIONS, 2024, 238
  • [29] Prediction of remaining useful life for lithium-ion battery with multiple health indicators
    Su C.
    Chen H.
    Wen Z.
    Eksploatacja i Niezawodnosc, 2021, 23 (01) : 176 - 183
  • [30] Prediction of remaining useful life for lithium-ion battery with multiple health indicators
    Su, Chun
    Chen, Hongjing
    Wen, Zejun
    EKSPLOATACJA I NIEZAWODNOSC-MAINTENANCE AND RELIABILITY, 2021, 23 (01): : 176 - 183