Some identities involving Bernoulli, Euler and degenerate Bernoulli numbers and their applications

被引:5
|
作者
Kim, Taekyun [1 ]
Kim, Dae San [2 ]
Kim, Hye Kyung [3 ]
机构
[1] Kwangwoon Univ, Dept Math, Seoul, South Korea
[2] Sogang Univ, Dept Math, Seoul, South Korea
[3] Daegu Catholic Univ, Dept Math Educ, Gyongsan 38430, South Korea
来源
APPLIED MATHEMATICS IN SCIENCE AND ENGINEERING | 2023年 / 31卷 / 01期
基金
新加坡国家研究基金会;
关键词
Volkenborn integral; fermionic p-adic integral; Euler numbers; Bernoulli numbers; degenerate Bernoulli numbers; random variables; POLYNOMIALS; Z(P);
D O I
10.1080/27690911.2023.2220873
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The paper has two main objectives. Firstly, it explores the properties of hyperbolic cosine and hyperbolic sine functions by using Volkenborn and the fermionic p-adic integrals, respectively. It also investigates interesting identities involving Bernoulli and degenerate Bernoulli numbers from differential equations with their solutions. Secondly, it introduces a random variable whose mass function is given in terms of Euler polynomials and find some expressions for the expectation of the random variable.
引用
收藏
页数:12
相关论文
共 50 条
  • [22] Some combinatorial identities of the degenerate Bernoulli and Euler-Genocchi polynomials
    H. Belbachir
    S. Hadj-Brahim
    Y. Otmani
    M. Rachidi
    Indian Journal of Pure and Applied Mathematics, 2022, 53 : 425 - 442
  • [23] Some combinatorial identities of the degenerate Bernoulli and Euler-Genocchi polynomials
    Belbachir, H.
    Hadj-Brahim, S.
    Otmani, Y.
    Rachidi, M.
    INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 2022, 53 (02): : 425 - 442
  • [24] MOMENTS AND CUMULANTS ON IDENTITIES FOR BERNOULLI AND EULER NUMBERS
    Jiu, Lin
    Shi, Diane Y. H.
    MATHEMATICAL REPORTS, 2022, 24 (04): : 643 - +
  • [25] Two identities for the Bernoulli-Euler numbers
    Gauthier, N.
    INTERNATIONAL JOURNAL OF MATHEMATICAL EDUCATION IN SCIENCE AND TECHNOLOGY, 2008, 39 (07) : 937 - 944
  • [26] New identities involving Bernoulli and Euler polynomials
    Pan, H
    Sun, ZW
    JOURNAL OF COMBINATORIAL THEORY SERIES A, 2006, 113 (01) : 156 - 175
  • [27] Identities Related to the Bernoulli and the Euler Numbers and Polynomials
    Al, Busra
    Alkan, Mustafa
    INTERNATIONAL CONFERENCE ON NUMERICAL ANALYSIS AND APPLIED MATHEMATICS ICNAAM 2019, 2020, 2293
  • [28] Some identities for Bernoulli and Euler polynomials
    Wu, KJ
    Sun, ZW
    Pan, H
    FIBONACCI QUARTERLY, 2004, 42 (04): : 295 - 299
  • [29] SOME IDENTITIES ON THE GENERALIZED HIGHER-ORDER EULER AND BERNOULLI NUMBERS
    Wang, Nianliang
    Li, Chao
    Li, Hailong
    ARS COMBINATORIA, 2011, 102 : 517 - 528
  • [30] SOME THEOREMS ON BERNOULLI AND EULER NUMBERS
    Hwang, K. -W.
    Dolgy, D. V.
    Kim, D. S.
    Kim, T.
    Lee, S. H.
    ARS COMBINATORIA, 2013, 109 : 285 - 297