SOME THEOREMS ON BERNOULLI AND EULER NUMBERS

被引:0
|
作者
Hwang, K. -W. [1 ]
Dolgy, D. V. [2 ]
Kim, D. S. [3 ]
Kim, T. [4 ]
Lee, S. H. [5 ]
机构
[1] Dong A Univ, Dept Math, Pusan 604714, South Korea
[2] Kwangwoon Univ, Seoul 139701, South Korea
[3] Sogang Univ, Dept Math, Seoul 121741, South Korea
[4] Kwangwoon Univ, Dept Math, Seoul 139701, South Korea
[5] Kwangwoon Univ, Div Gen Educ, Seoul 139701, South Korea
关键词
Bernoulli numbers; Euler numbers; p-adic integrals; BERNSTEIN;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
From differential operator and the generating functions of Bernoulli and Euler polynomials, we derive some new theorems on Bernoulli and Euler numbers. By using integral formulae of arithmetical properties relating to the Bernoulli and Euler polynomials, we obtain new identities on Bernoulli and Euler numbers. Finally we give some new properties on Bernoulli and Euler numbers arising from the p-adic integrals on Z(p)
引用
收藏
页码:285 / 297
页数:13
相关论文
共 50 条