SOME THEOREMS ON BERNOULLI AND EULER NUMBERS

被引:0
|
作者
Hwang, K. -W. [1 ]
Dolgy, D. V. [2 ]
Kim, D. S. [3 ]
Kim, T. [4 ]
Lee, S. H. [5 ]
机构
[1] Dong A Univ, Dept Math, Pusan 604714, South Korea
[2] Kwangwoon Univ, Seoul 139701, South Korea
[3] Sogang Univ, Dept Math, Seoul 121741, South Korea
[4] Kwangwoon Univ, Dept Math, Seoul 139701, South Korea
[5] Kwangwoon Univ, Div Gen Educ, Seoul 139701, South Korea
关键词
Bernoulli numbers; Euler numbers; p-adic integrals; BERNSTEIN;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
From differential operator and the generating functions of Bernoulli and Euler polynomials, we derive some new theorems on Bernoulli and Euler numbers. By using integral formulae of arithmetical properties relating to the Bernoulli and Euler polynomials, we obtain new identities on Bernoulli and Euler numbers. Finally we give some new properties on Bernoulli and Euler numbers arising from the p-adic integrals on Z(p)
引用
收藏
页码:285 / 297
页数:13
相关论文
共 50 条
  • [21] IDENTITIES ON THE BERNOULLI AND THE EULER NUMBERS AND POLYNOMIALS
    Kim, T.
    Kim, D. S.
    Bayad, A.
    Rim, S. -H.
    ARS COMBINATORIA, 2012, 107 : 455 - 463
  • [22] Congruences for Bernoulli, Euler, and Stirling numbers
    Young, PT
    JOURNAL OF NUMBER THEORY, 1999, 78 (02) : 204 - 227
  • [23] On (i, q) Bernoulli and Euler numbers
    Cenkci, M.
    Kurt, V.
    Rim, S. H.
    Simsek, Y.
    APPLIED MATHEMATICS LETTERS, 2008, 21 (07) : 706 - 711
  • [24] DOUBLE SERIES FOR BERNOULLI AND EULER NUMBERS
    HIGGINS, J
    JOURNAL OF THE LONDON MATHEMATICAL SOCIETY, 1970, 2 (OCT): : 722 - +
  • [25] IDENTITIES FOR THE BERNOULLI AND EULER NUMBERS AND POLYNOMIALS
    Kim, T.
    Lee, B.
    Lee, S. H.
    Rim, S-H.
    ARS COMBINATORIA, 2012, 107 : 325 - 337
  • [26] Recurrent formula of Bernoulli numbers and the relationships among the coefficients of beam,Bernoulli numbers and Euler numbers
    老大中
    赵珊珊
    老天夫
    Journal of Beijing Institute of Technology, 2015, 24 (03) : 298 - 304
  • [27] Recurrent formula of Bernoulli numbers and the relationships among the coefficients of beam, Bernoulli numbers and Euler numbers
    Lao, Da-Zhong
    Zhao, Shan-Shan
    Lao, Tian-Fu
    Journal of Beijing Institute of Technology (English Edition), 2015, 24 (03): : 298 - 304
  • [28] Some results for the q-Bernoulli, q-Euler numbers and polynomials
    Daeyeoul Kim
    Min-Soo Kim
    Advances in Difference Equations, 2011
  • [29] Some results for the q-Bernoulli, q-Euler numbers and polynomials
    Kim, Daeyeoul
    Kim, Min-Soo
    ADVANCES IN DIFFERENCE EQUATIONS, 2011, : 1 - 16
  • [30] MULTIPLICATION THEOREMS FOR BERNOULLI POLYNOMIALS AND EXPLICIT REPRESENTATIONS OF BERNOULLI NUMBERS
    DILCHER, K
    ABHANDLUNGEN AUS DEM MATHEMATISCHEN SEMINAR DER UNIVERSITAT HAMBURG, 1989, 59 : 143 - 156