The dimension-wise quadrature estimation of dynamic latent variable models for count data

被引:1
|
作者
Bianconcini, Silvia [1 ]
Cagnone, Silvia [1 ]
机构
[1] Univ Bologna, Dept Stat Sci, Via Belle Arti 41, I-40126 Bologna, Italy
关键词
Latent autoregressive models; Count data; Pairwise likelihood; Approximate likelihood inference; TIME-SERIES MODELS; STATE-SPACE MODELS; MAXIMUM-LIKELIHOOD; INFERENCE; INTEGRATION;
D O I
10.1016/j.csda.2022.107585
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
When dynamic latent variable models are specified for discrete and/or mixed observations, problems related to the integration of the likelihood function arise since analytical solutions do not exist. A recently developed dimension-wise quadrature is applied to deal with these likelihoods with high-dimensional integrals. A comparison is performed with the pairwise likelihood method, one of the most often used remedies. Both a real data application and a simulation study show the superior performance of the dimension-wise quadrature with respect to the pairwise likelihood in estimating the parameters of the latent autoregressive process. (c) 2022 Elsevier B.V. All rights reserved.
引用
收藏
页数:7
相关论文
共 50 条
  • [1] Approximate likelihood inference in generalized linear latent variable models based on the dimension-wise quadrature
    Bianconcini, Silvia
    Cagnone, Silvia
    Rizopoulos, Dimitris
    [J]. ELECTRONIC JOURNAL OF STATISTICS, 2017, 11 (02): : 4404 - 4423
  • [2] Adaptive Quadrature for Maximum Likelihood Estimation of a Class of Dynamic Latent Variable Models
    Cagnone, Silvia
    Bartolucci, Francesco
    [J]. COMPUTATIONAL ECONOMICS, 2017, 49 (04) : 599 - 622
  • [3] Adaptive Quadrature for Maximum Likelihood Estimation of a Class of Dynamic Latent Variable Models
    Silvia Cagnone
    Francesco Bartolucci
    [J]. Computational Economics, 2017, 49 : 599 - 622
  • [4] Dimension in latent variable models
    Levine, MV
    [J]. JOURNAL OF MATHEMATICAL PSYCHOLOGY, 2003, 47 (04) : 450 - 466
  • [5] Latent variable models for ordinal data by using the adaptive quadrature approximation
    Silvia Cagnone
    Paola Monari
    [J]. Computational Statistics, 2013, 28 : 597 - 619
  • [6] Latent variable models for ordinal data by using the adaptive quadrature approximation
    Cagnone, Silvia
    Monari, Paola
    [J]. COMPUTATIONAL STATISTICS, 2013, 28 (02) : 597 - 619
  • [7] dCAM: Dimension-wise Class Activation Map for Explaining Multivariate Data Series Classification
    Boniol, Paul
    Meftah, Mohammed
    Remy, Emmanuel
    Palpanas, Themis
    [J]. PROCEEDINGS OF THE 2022 INTERNATIONAL CONFERENCE ON MANAGEMENT OF DATA (SIGMOD '22), 2022, : 1175 - 1189
  • [8] On Estimation in Latent Variable Models
    Fang, Guanhua
    Li, Ping
    [J]. INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 139, 2021, 139
  • [9] Simulated latent variable estimation of models with ordered categorical data
    Breslaw, JA
    McIntosh, J
    [J]. JOURNAL OF ECONOMETRICS, 1998, 87 (01) : 25 - 47
  • [10] Generalized Linear Latent Variable Models for Multivariate Count and Biomass Data in Ecology
    Niku, Jenni
    Warton, David I.
    Hui, Francis K. C.
    Taskinen, Sara
    [J]. JOURNAL OF AGRICULTURAL BIOLOGICAL AND ENVIRONMENTAL STATISTICS, 2017, 22 (04) : 498 - 522