The dimension-wise quadrature estimation of dynamic latent variable models for count data

被引:1
|
作者
Bianconcini, Silvia [1 ]
Cagnone, Silvia [1 ]
机构
[1] Univ Bologna, Dept Stat Sci, Via Belle Arti 41, I-40126 Bologna, Italy
关键词
Latent autoregressive models; Count data; Pairwise likelihood; Approximate likelihood inference; TIME-SERIES MODELS; STATE-SPACE MODELS; MAXIMUM-LIKELIHOOD; INFERENCE; INTEGRATION;
D O I
10.1016/j.csda.2022.107585
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
When dynamic latent variable models are specified for discrete and/or mixed observations, problems related to the integration of the likelihood function arise since analytical solutions do not exist. A recently developed dimension-wise quadrature is applied to deal with these likelihoods with high-dimensional integrals. A comparison is performed with the pairwise likelihood method, one of the most often used remedies. Both a real data application and a simulation study show the superior performance of the dimension-wise quadrature with respect to the pairwise likelihood in estimating the parameters of the latent autoregressive process. (c) 2022 Elsevier B.V. All rights reserved.
引用
收藏
页数:7
相关论文
共 50 条
  • [1] Approximate likelihood inference in generalized linear latent variable models based on the dimension-wise quadrature
    Bianconcini, Silvia
    Cagnone, Silvia
    Rizopoulos, Dimitris
    ELECTRONIC JOURNAL OF STATISTICS, 2017, 11 (02): : 4404 - 4423
  • [2] Dimension-wise adaptive spare grid quadrature nonlinear filter
    Xu, Song
    Sun, Xiu-Xia
    Liu, Shu-Guang
    Liu, Xi
    Cai, Ming
    Sun, X.-X. (kgycw@163.com), 1600, Science Press (40): : 1249 - 1264
  • [3] Adaptive Quadrature for Maximum Likelihood Estimation of a Class of Dynamic Latent Variable Models
    Cagnone, Silvia
    Bartolucci, Francesco
    COMPUTATIONAL ECONOMICS, 2017, 49 (04) : 599 - 622
  • [4] Adaptive Quadrature for Maximum Likelihood Estimation of a Class of Dynamic Latent Variable Models
    Silvia Cagnone
    Francesco Bartolucci
    Computational Economics, 2017, 49 : 599 - 622
  • [5] Dimension in latent variable models
    Levine, MV
    JOURNAL OF MATHEMATICAL PSYCHOLOGY, 2003, 47 (04) : 450 - 466
  • [6] Latent variable models for ordinal data by using the adaptive quadrature approximation
    Silvia Cagnone
    Paola Monari
    Computational Statistics, 2013, 28 : 597 - 619
  • [7] Latent variable models for ordinal data by using the adaptive quadrature approximation
    Cagnone, Silvia
    Monari, Paola
    COMPUTATIONAL STATISTICS, 2013, 28 (02) : 597 - 619
  • [8] dCAM: Dimension-wise Class Activation Map for Explaining Multivariate Data Series Classification
    Boniol, Paul
    Meftah, Mohammed
    Remy, Emmanuel
    Palpanas, Themis
    PROCEEDINGS OF THE 2022 INTERNATIONAL CONFERENCE ON MANAGEMENT OF DATA (SIGMOD '22), 2022, : 1175 - 1189
  • [9] On Estimation in Latent Variable Models
    Fang, Guanhua
    Li, Ping
    INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 139, 2021, 139
  • [10] Simulated latent variable estimation of models with ordered categorical data
    Breslaw, JA
    McIntosh, J
    JOURNAL OF ECONOMETRICS, 1998, 87 (01) : 25 - 47