Simultaneous uniqueness in determining the space-dependent coefficient and source for a time-fractional diffusion equation

被引:0
|
作者
Jing, Xiaohua [1 ]
Song, Xueli [1 ]
机构
[1] Changan Univ, Sch Sci, Xian 710064, Shaanxi, Peoples R China
基金
中央高校基本科研业务费专项资金资助;
关键词
inverse problems; time-fractional diffusion equation; uniqueness; IDENTIFICATION;
D O I
10.1002/mma.9697
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This article concerns the uniqueness of an inverse problem of simultaneously identifying the space-dependent coefficient and source in a one-dimensional time-fractional diffusion equation with derivative order alpha is an element of(0,1)$$ \alpha \in \left(0,1\right) $$ and the zero Neumann boundary value. By additional boundary measurements, we first obtain the uniqueness of the coefficient from the Laplace transform and a transformation formula. Then, we further show the uniqueness of the source through the asymptotic behavior of solutions to the corresponding forward problem. The result shows that the uniqueness of the simultaneous identification can be obtained under the condition that the prior information only on one set of parameters in the model is given other than that of two sets.
引用
收藏
页码:1034 / 1043
页数:10
相关论文
共 50 条
  • [21] Space-dependent source determination in a time-fractional diffusion equation using a local discontinuous Galerkin method
    S. Yeganeh
    R. Mokhtari
    J. S. Hesthaven
    BIT Numerical Mathematics, 2017, 57 : 685 - 707
  • [22] Space-dependent source determination in a time-fractional diffusion equation using a local discontinuous Galerkin method
    Yeganeh, S.
    Mokhtari, R.
    Hesthaven, J. S.
    BIT NUMERICAL MATHEMATICS, 2017, 57 (03) : 685 - 707
  • [23] Time-fractional diffusion equation with time dependent diffusion coefficient
    Fa, KS
    Lenzi, EK
    PHYSICAL REVIEW E, 2005, 72 (01):
  • [24] Numerical Solution to the Space-Time Fractional Diffusion Equation and Inversion for the Space-Dependent Diffusion Coefficient
    Chi, Guangsheng
    Li, Gongsheng
    Sun, Chunlong
    Jia, Xianzheng
    JOURNAL OF COMPUTATIONAL AND THEORETICAL TRANSPORT, 2017, 46 (02) : 122 - 146
  • [25] Simultaneous uniqueness for an inverse problem in a time-fractional diffusion equation
    Jing, Xiaohua
    Peng, Jigen
    Applied Mathematics Letters, 2020, 109
  • [26] Tikhonov regularization method for identifying the space-dependent source for time-fractional diffusion equation on a columnar symmetric domain
    Fan Yang
    Pan Zhang
    Xiao-Xiao Li
    Xin-Yi Ma
    Advances in Difference Equations, 2020
  • [27] Simultaneous uniqueness for an inverse problem in a time-fractional diffusion equation
    Jing, Xiaohua
    Peng, Jigen
    APPLIED MATHEMATICS LETTERS, 2020, 109
  • [28] Uniqueness for identifying a space-dependent zeroth-order coefficient in a time-fractional diffusion-wave equation from a single boundary point measurement
    Wei, T.
    Yan, X. B.
    APPLIED MATHEMATICS LETTERS, 2021, 112
  • [29] Tikhonov regularization method for identifying the space-dependent source for time-fractional diffusion equation on a columnar symmetric domain
    Yang, Fan
    Zhang, Pan
    Li, Xiao-Xiao
    Ma, Xin-Yi
    ADVANCES IN DIFFERENCE EQUATIONS, 2020, 2020 (01)
  • [30] On Time-Fractional Diffusion Equations with Space-Dependent Variable Order
    Yavar Kian
    Eric Soccorsi
    Masahiro Yamamoto
    Annales Henri Poincaré, 2018, 19 : 3855 - 3881