Neural networks for parameter estimation in intractable models

被引:11
|
作者
Lenzi, Amanda [1 ]
Bessac, Julie [1 ]
Rudi, Johann [1 ]
Stein, Michael L. [1 ,2 ]
机构
[1] Argonne Natl Lab, Math & Comp Sci Div, Lemont, IL 60439 USA
[2] Rutgers State Univ, Dept Stat, Piscataway, NJ USA
关键词
Deep neural networks; Intractable likelihood; Max -stable distributions; Parameter estimation; APPROXIMATE BAYESIAN COMPUTATION; INFERENCE; PREDICTION; SIMULATION; EXTREMES;
D O I
10.1016/j.csda.2023.107762
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
The goal is to use deep learning models to estimate parameters in statistical models when standard likelihood estimation methods are computationally infeasible. For instance, inference for max-stable processes is exceptionally challenging even with small datasets, but simulation is straightforward. Data from model simulations are used to train deep neural networks and learn statistical parameters from max-stable models. The proposed neural network-based method provides a competitive alternative to current approaches, as demonstrated by considerable accuracy and computational time improvements. It serves as a proof of concept for deep learning in statistical parameter estimation and can be extended to other estimation problems.(c) 2023 Elsevier B.V. All rights reserved.
引用
收藏
页数:21
相关论文
共 50 条
  • [1] Parameter Estimation for Hidden Markov Models with Intractable Likelihoods
    Dean, Thomas A.
    Singh, Sumeetpal S.
    Jasra, Ajay
    Peters, Gareth W.
    SCANDINAVIAN JOURNAL OF STATISTICS, 2014, 41 (04) : 970 - 987
  • [2] Application of Neural Networks to External Parameter Estimation for Nonlinear Vehicle Models
    Gräber T.
    Schäfer M.
    Unterreiner M.
    Schramm D.
    SAE International Journal of Connected and Automated Vehicles, 2021, 4 (03): : 297 - 312
  • [3] Parameter estimation for bursting neural models
    Tien, Joseph H.
    Guckenheimer, John
    JOURNAL OF COMPUTATIONAL NEUROSCIENCE, 2008, 24 (03) : 358 - 373
  • [4] Parameter estimation via neural networks
    Phillips, NG
    Kogut, A
    STATISTICAL CHALLENGES IN ASTRONOMY, 2003, : 471 - 473
  • [5] Parameter estimation for bursting neural models
    Joseph H. Tien
    John Guckenheimer
    Journal of Computational Neuroscience, 2008, 24 : 358 - 373
  • [6] PARAMETER-ESTIMATION OF STATE-SPACE MODELS BY RECURRENT NEURAL NETWORKS
    RAOL, JR
    IEE PROCEEDINGS-CONTROL THEORY AND APPLICATIONS, 1995, 142 (02): : 114 - 118
  • [7] Artificial neural networks for model identification and parameter estimation in computational cognitive models
    Rmus, Milena
    Pan, Ti-Fen
    Xia, Liyu
    Collins, Anne G. E.
    PLOS COMPUTATIONAL BIOLOGY, 2024, 20 (05)
  • [8] Parameter estimation for two-dimensional vector models using neural networks
    Xu, L
    AzimiSadjadi, MR
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 1995, 43 (12) : 3090 - 3094
  • [9] Gradient Free Parameter Estimation for Hidden Markov Models with Intractable Likelihoods
    Elena Ehrlich
    Ajay Jasra
    Nikolas Kantas
    Methodology and Computing in Applied Probability, 2015, 17 : 315 - 349
  • [10] Gradient Free Parameter Estimation for Hidden Markov Models with Intractable Likelihoods
    Ehrlich, Elena
    Jasra, Ajay
    Kantas, Nikolas
    METHODOLOGY AND COMPUTING IN APPLIED PROBABILITY, 2015, 17 (02) : 315 - 349